РОЛЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ ГЕНОМА В РЕГУЛЯЦИИ ТРАНСКРИПЦИИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре рассматривается роль пространственной организации генома в установлении коммуникации между энхансерами и промоторами. Особое внимание уделяется полногеномному анализу пространственных контактов между энхансерами и промоторами и идентификации белков, участвующих в поддержании этих контактов. Отдельно рассматривается роль экструзии хроматиновых петель котезиновыми комплексами в перемещении энхансеров к активируемым промоторам. В заключительной части статьи анализируются проблемы, требующие решения. В частности, рассматривается вопрос о том, насколько близко к промотору в физическом пространстве клеточного ядра должен располагаться энхансер для того, чтобы стало возможным установление коммуникации между этими регуляторными элементами.

Об авторах

С. В. Разин

Институт биологии гена Российской академии наук; Московский государственный университет им. М.В. Ломоносова

Email: sergey.v.razin@inbox.ru
Москва, Россия

Список литературы

  1. Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation // Science. 2002. V. 295. № 5558. P. 1306–1311.
  2. Cullen K.E., Kladde M.P., Seyfred M.A. Interaction between transcription regulatory regions of prolactin chromatin // Science. 1993. V. 261. № 5118. P. 203–206.
  3. Palstra R.J., Tolhuis B., Splinter E. et al. The beta-globin nuclear compartment in development and erythroid differentiation // Nat. Genet. 2003. V. 35. № 2. P. 190–194.
  4. Tolhuis B., Palstra R.J., Splinter E. et al. Looping and interaction between hypersensitive sites in the active beta-globin locus // Mol. Cell. 2002. V. 10. № 6. P. 1453–1465. https://doi.org/10.1016/S1097-2765(02)00781-5
  5. Vernimmen D., De Gobbi M., Sloane-Stanley J.A. et al. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression // EMBO J. 2007. V. 26. № 8. P. 2041–2051. https://doi.org/10.1038/sj.emboj.7601654
  6. Vernimmen D., Marques-Kranc F., Sharpe J.A. et al. Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40) // Blood. 2009. V. 114. № 19. P. 4253–4260. https://doi.org/10.1182/blood-2009-03-213439
  7. Philonenko E.S., Klochkov D.B., Borunova V.V. et al. TMEM8 – a non-globin gene entrapped in the globin web // Nucl. Acids Res. 2009. V. 37. № 22. P. 7394–7406. https://doi.org/10.1093/nar/gkp838
  8. Ulianov S.V., Gavrilov A.A., Razin S.V. Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages // Epigenetics & Chromatin. 2012. V. 5. № 1. P. 16. https://doi.org/10.1186/1756-8935-5-16
  9. Williamson I., Berlivet S., Eskeland R. et al. Spatial genome organization: Contrasting views from chromosome conformation capture and fluorescence in situ hybridization // Genes Dev. 2014. V. 28. № 24. P. 2778–2791. https://doi.org/10.1101/gad.251694.114
  10. Williamson I., Lettice L.A., Hill R.E., Bickmore W.A. Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity // Development. 2016. V. 143. № 16. P. 2994–3001. https://doi.org/10.1242/dev.139188
  11. Salem T., Gomard T., Court F. et al. Chromatin loop organization of the junb locus in mouse dendritic cells // Nucl. Acids Res. 2013. V. 41. № 19. P. 8908–8925. https://doi.org/10.1093/nar/gkt669
  12. Krivega I., Dean A. Chromatin looping as a target for altering erythroid gene expression // Ann. N.Y. Acad. Sci. 2016. V. 1368. № 1. P. 31–39. https://doi.org/10.1111/nyas.13012
  13. Breda L., Motta I., Lourenco S. et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers // Blood. 2016. V. 128. № 8. P. 1139–1143. https://doi.org/10.1182/blood-2016-01-691089
  14. Deng W., Rupon J.W., Krivega I. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping // Cell. 2014. V. 158. № 4. P. 849–860. https://doi.org/10.1016/j.cell.2014.05.050
  15. Razin S.V., Ulianov S.V., Iarovaia O.V. Enhancer function in the 3D genome // Genes (Basel). 2023. V. 14. № 6. https://doi.org/10.3390/genes14061277
  16. Yang J.H., Hansen A.S. Enhancer selectivity in space and time: From enhancer-promoter interactions to promoter activation // Nat. Rev. Mol. Cell. Biol. 2024. V. 25. № 7. P. 574–591. https://doi.org/10.1038/s41580-024-00710-6
  17. Hamamoto K., Fukaya T. Molecular architecture of enhancer-promoter interaction // Curr. Opin. Cell. Biol. 2022. V. 74. P. 62–70. https://doi.org/10.1016/j.ceb.2022.01.003
  18. Ulianov S.V., Zakharova V.V., Galitsyna A.A. et al. Order and stochasticity in the folding of individual Drosophila genomes // Nat. Commun. 2021. V. 12. № 1. P. 41. https://doi.org/10.1038/s41467-020-20292-z
  19. Dixon J.R., Gorkin D.U., Ren B. Chromatin domains: The unit of chromosome organization // Mol. Cell. 2016. V. 62. № 5. P. 668–680. https://doi.org/10.1016/j.molcel.2016.05.018
  20. Dixon J.R., Selvaraj S., Yue F. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions // Nature. 2012. V. 485. № 7398. С. 376–380. https://doi.org/10.1038/nature11082
  21. Sexton T., Yaffe E., Kenigsberg E. et al. Three-dimensional folding and functional organization principles of the Drosophila genome // Cell. 2012. V. 148. № 3. P. 458–472. https://doi.org/10.1016/j.cell.2012.01.010
  22. Nora E.P., Lajoie B.R., Schulz E.G. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre // Nature. 2012. V. 485. № 7398. P. 381–385. https://doi.org/10.1038/nature11049
  23. Valton A.L., Dekker J. TAD disruption as oncogenic driver // Curr. Opin. Genet. Dev. 2016. V. 36. P. 34–40. https://doi.org/10.1016/j.gde.2016.03.008
  24. Tiukacheva E.A., Ulianov S.V., Karpukhina A. et al. 3D genome alterations and editing in pathology // Mol. Ther. 2023. V. 31. № 4. P. 924–933. https://doi.org/10.1016/j.ymthe.2023.02.005
  25. Franke M., Ibrahim D.M., Andrey G. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications // Nature. 2016. V. 538. № 7624. P. 265–269. https://doi.org/10.1038/nature19800
  26. Lupianez D.G., Kraft K., Heinrich V. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions // Cell. 2015. V. 161. № 5. P. 1012–1025. https://doi.org/10.1016/j.cell.2015.04.004
  27. Lupianez D.G., Spielmann M., Mundlos S. Breaking TADs: How alterations of chromatin domains result in disease // Trends Genet. 2016. V. 32. № 4. P. 225–237. https://doi.org/10.1016/j.tig.2016.01.003
  28. Sanborn A.L., Rao S.S., Huang S.C. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 47. P. E6456–E6465. https://doi.org/10.1073/pnas.1518552112
  29. Fudenberg G., Imakaev M., Lu C. et al. Formation of chromosomal domains by loop extrusion // Cell Rep. 2016. V. 15. № 9. P. 2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085
  30. Wutz G., Varnai C., Nagasaka K. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins // EMBO J. 2017. V. 36. № 24. P. 3573–3599. https://doi.org/10.15252/embj.201798004
  31. Bintu B., Mateo L.J., Su J.H. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells // Science. 2018. T. 362. № 6413. https://doi.org/10.1126/science.aau1783
  32. Palstra R.J. Close encounters of the 3C kind: Longrange chromatin interactions and transcriptional regulation // Brief. Funct. Genomic Proteomic. 2009. V. 8. № 4. P. 297–309. 33. Holwerda S., de Laat W. Chromatin loops, gene positioning, and gene expression // Front. Genet. 2012. V. 3. https://doi.org/10.3389/fgene.2012.00217
  33. Li X., Levine M. What are tethering elements? // Curr. Opin. Genet. Dev. 2024. V. 84. https://doi.org/10.1016/j.gde.2023.102151
  34. Calhoun V.C., Levine M. Long-range enhancer-promoter interactions in the Scr-Antp interval of the Drosophila antennapedia complex // Proc. Natl Acad. Sci. USA. 2003. V. 100. № 17. P. 9878–9883. https://doi.org/10.1073/pnas.1233791100
  35. Harke J., Lee J.R., Nguyen S.C. et al. Multiple allelic configurations govern long-range Shh enhancer-promoter communication in the embryonic forebrain // Mol. Cell. 2024. V. 84. № 24. P. 4698–4710. https://doi.org/10.1016/j.molcel.2024.10.042
  36. Golov A.K., Gavrilov A.A., Kaplan N., Razin S.V. A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model // Elife. 2024. V. 12. https://doi.org/10.7554/eLife.91596
  37. Hsieh T.H., Weiner A., Lajoie B. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C // Cell. 2015. V. 162. № 1. P. 108–119. https://doi.org/10.1016/j.cell.2015.05.048
  38. Fulco C.P., Munschauer M., Anyoha R. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference // Science. 2016. V. 354. № 6313. P. 769–773. https://doi.org/10.1126/science.aag2445
  39. Shukla A., Huangfu D. Decoding the noncoding genome via large-scale CRISPR screens // Curr. Opin. Genet. Dev. 2018. V. 52. P. 70–76. https://doi.org/10.1016/j.gde.2018.06.001
  40. Gasperini M., Hill A.J., McFaline-Figueroa J.L. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens // Cell. 2019. V. 176. № 1–2. P. 377–390. https://doi.org/10.1016/j.cell.2018.11.029
  41. Fulco C.P., Nasser J., Jones T.R. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations // Nat. Genet. 2019. V. 51. № 12. P. 1664–1669. https://doi.org/10.1038/s41588-019-0538-0
  42. Murphy D., Salataj E., Di Giammartino D.C. et al. 3D enhancer-promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages // Nat. Struct. Mol. Biol. 2024. V. 31. № 1. P. 125–140. https://doi.org/10.1038/s41594-023-01130-4
  43. Zhu Y., Rosenfeld M.G., Suh Y. Ultrafine mapping of chromosome conformation at hundred basepair resolution reveals regulatory genome architecture // Proc. Natl Acad. Sci. USA. 2023. V. 120. № 45. https://doi.org/10.1073/pnas.2313285120
  44. Dekker J., Mirny L. The 3D Genome as moderator of chromosomal communication // Cell. 2016. V. 164. № 6. P. 1110–1121. https://doi.org/10.1016/j.cell.2016.02.007
  45. Lucas J.S., Zhang Y., Dudko O.K., Murre C. 3D trajectories adopted by coding and regulatory DNA elements: First-passage times for genomic interactions // Cell. 2014. V. 158. № 2. P. 339–352. https://doi.org/10.1016/j.cell.2014.05.036
  46. Valton A.L., Venev S.V., Mair B. et al. A cohesin traffic pattern genetically linked to gene regulation // Nat. Struct. Mol. Biol. 2022. V. 29. № 12. P. 1239–1251. https://doi.org/10.1038/s41594-022-00890-9
  47. Rinzema N.J., Sofiadis K., Tjalsma S.J.D. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes // Nat. Struct. Mol. Biol. 2022. V. 29. № 6. P. 563–574. https://doi.org/10.1038/s41594-022-00787-7
  48. Vos E.S.M., Valdes-Quezada C., Huang Y. et al. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression // Mol. Cell. 2021. V. 81. № 15. P. 3082–3095. https://doi.org/10.1016/j.molcel.2021.06.008
  49. Kane L., Williamson I., Flyamer I.M. et al. Cohesin is required for long-range enhancer action at the Shh locus // Nat. Struct. Mol. Biol. 2022. V. 29. № 9. P. 891–897. https://doi.org/10.1038/s41594-022-00821-8
  50. Guckelberger P., Doughty B.R., Munson G. et al. Cohesin-mediated 3D contacts tune enhancer-promoter regulation // bioRxiv. 2024. https://doi.org/10.1101/2024.07.12.603288
  51. Golov A.K., Gavrilov A.A. Cohesin-dependent loop extrusion: Molecular mechanics and role in cell physiology // Biochemistry (Mosc.). 2024. V. 89. № 4. P. 601–625. https://doi.org/10.1134/S0006297924040023
  52. Golov A.K., Gavrilov A.A. Cohesin complex: Structure
  53. and principles of interaction with DNA // Biochemistry (Mosc). 2024. V. 89. № 4. P. 585–600. https://doi.org/10.1134/S0006297924040011
  54. Kim Y., Shi Z., Zhang H. et al. Human cohesin compacts DNA by loop extrusion // Science. 2019. V. 366. № 6471. P. 1345–1349. https://doi.org/10.1126/science.aaz4475
  55. Galitsyna A., Ulianov S.V., Bykov N.S. et al. Extrusion fountains are hallmarks of chromosome organization emerging upon zygotic genome activation // bioRxiv. 2023. https://doi.org/10.1101/2023.07.15.549120
  56. Ing-Simmons E., Seitan V.C., Faure A.J. et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin // Genome Res. 2015. V. 25. № 4. P. 504–513. https://doi.org/10.1101/gr.184986.114
  57. Fursova N.A., Larson D.R. Transcriptional machinery as an architect of genome structure // Curr. Opin. Struct. Biol. 2024. V. 89. https://doi.org/10.1016/j.sbi.2024.102920
  58. Kubo N., Ishii H., Xiong X. et al. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation // Nat. Struct. Mol. Biol. 2021. V. 28. № 2. P. 152–161. https://doi.org/10.1038/s41594-020-00539-5
  59. Ren G., Jin W., Cui K. et al. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression // Mol. Cell. 2017. V. 67. № 6. P. 1049–1058 e1046. https://doi.org/10.1016/j.molcel.2017.08.026
  60. Banigan E.J., Tang W., van den Berg A.A. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion // Proc. Natl Acad. Sci. USA. 2023. V. 120. № 11. https://doi.org/10.1073/pnas.2210480120
  61. Zhang S., Ubelmesser N., Barbieri M., Papantonis A. Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion // Nat. Genet. 2023. V. 55. № 5. P. 832–840. https://doi.org/10.1038/s41588-023-01364-4
  62. Brandao H.B., Paul P., van den Berg A.A. et al. RNA polymerases as moving barriers to condensin loop extrusion // Proc. Natl Acad. Sci. USA. 2019. V. 116. № 41. P. 20489–20499. https://doi.org/10.1073/pnas.1907009116
  63. Hsieh T.S., Cattoglio C., Slobodyanyuk E. et al. Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1 // Nat. Genet. 2022. V. 54. № 12. P. 1919–1932. https://doi.org/10.1038/s41588-022-01223-8
  64. Rao S.S.P., Huang S.C., Glenn St Hilaire B. et al. Cohesin loss eliminates all loop domains // Cell. 2017. V. 171. № 2. P. 305–320. https://doi.org/10.1016/j.cell.2017.09.026
  65. Schwarzer W., Abdennur N., Goloborodko A. et al. Two independent modes of chromatin organization revealed by cohesin removal // Nature. 2017. V. 551. № 7678. P. 51–56. https://doi.org/10.1038/nature24281
  66. Ulianov S.V., Velichko A.K., Magnitov M.D. et al. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells // Nucl. Acids Res. 2021. V. 49. № 18. P. 10524–10541. https://doi.org/10.1093/nar/gkab249
  67. Oo J.A., Warwick T., Palfi K. et al. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers // Nat. Commun. 2025. V. 16. № 1. P. 131. https://doi.org/10.1038/s41467-024-55539-6
  68. Serra F., Nieto-Aliseda A., Fanlo-Escudero L. et al. p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response // Nat. Commun. 2024. V. 15. № 1. P. 2821. https://doi.org/10.1038/s41467-024-46666-1
  69. Rubio L.S., Mohajan S., Gross D.S. Heat shock factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes // Elife. 2024. V. 12. https://doi.org/10.7554/eLife.92464
  70. Chowdhary S., Kainth A.S., Paracha S. et al. Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response // Mol. Cell. 2022. V. 82. № 22. P. 4386–4399 e4387. https://doi.org/10.1016/j.molcel.2022.10.013
  71. De Laat W., Grosveld F. Spatial organization of gene expression: The active chromatin hub // Chromosome Res. 2003. V. 11. P. 447–459.
  72. Gavrilov A.A., Gushchanskaya E.S., Strelkova O. et al. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub // Nucl. Acids Res. 2013. V. 41. № 6. P. 3563–3575. https://doi.org/10.1093/nar/gkt067
  73. Gavrilov A., Eivazova E., Priozhkova I. et al. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification // Methods Mol. Biol. 2009. V. 567. P. 171–188.
  74. De Wit E., de Laat W. A decade of 3C technologies: Insights into nuclear organization // Genes Dev. 2012. V. 26. № 1. P. 11–24.
  75. Denker A., de Laat W. The second decade of 3C technologies: Detailed insights into nuclear organization // Genes Dev. 2016. V. 30. № 12. P. 1357–1382. https://doi.org/10.1101/gad.281964.116
  76. Gavrilov A.A., Chetverina H.V., Chermnykh E.S. et al. Quantitative analysis of genomic element interactions by molecular colony technique // Nucl. Acids Res. 2014. V. 42. № 5. P. e36. https://doi.org/10.1093/nar/gkt1322
  77. Gavrilov A.A., Golov A.K., Razin S.V. Actual ligation frequencies in the chromosome conformation capture procedure // PLoS One. 2013. V. 8. № 3. https://doi.org/10.1371/journal.pone.0060403
  78. Heist T., Fukaya T., Levine M. Large distances separate coregulated genes in living Drosophila embryos // Proc. Natl Acad. Sci. USA. 2019. V. 116. № 30. P. 15062–15067. https://doi.org/10.1073/pnas.1908962116
  79. Chen H., Levo M., Barinov L. et al. Dynamic interplay between enhancer-promoter topology and gene activity // Nat. Genet. 2018. V. 50. № 9. P. 1296–1303. https://doi.org/10.1038/s41588-018-0175-z
  80. Li J., Hsu A., Hua Y. et al. Single-gene imaging links genome topology, promoter-enhancer communication and transcription control // Nat. Struct. Mol. Biol. 2020. V. 27. № 11. P. 1032–1040. https://doi.org/10.1038/s41594-020-0493-6
  81. Thiecke M.J., Wutz G., Muhar M. et al. Cohesin-dependent and -independent mechanisms mediate chromosomal contacts between promoters and enhancers // Cell Rep. 2020. V. 32. № 3. https://doi.org/10.1016/j.celrep.2020.107929
  82. Karr J.P., Ferrie J.J., Tjian R., Darzacq X. The transcription factor activity gradient (TAG) model: Contemplating a contact-independent mechanism for enhancer-promoter communication // Genes Dev. 2022. V. 36. № 1–2. P. 7–16. https://doi.org/10.1101/gad.349160.121
  83. Wurmser A., Basu S. Enhancer-promoter communication: It's not just about contact // Front. Mol. Biosci. 2022. V. 9. https://doi.org/10.3389/fmolb.2022.867303

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).