Повторяющиеся последовательности в геноме возбудителя сибирской язвы – использование в молекулярной эпидемиологии и влияние на структуру кодируемых белков
- Авторы: Гончарова Ю.О.1, Тимофеев В.С.1
-
Учреждения:
- Государственный научный центр прикладной микробиологии и биотехнологии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
- Выпуск: Том 61, № 10 (2025)
- Страницы: 29-40
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/355169
- DOI: https://doi.org/10.7868/S3034510325100036
- ID: 355169
Цитировать
Аннотация
Ключевые слова
Об авторах
Ю. О. Гончарова
Государственный научный центр прикладной микробиологии и биотехнологии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека
Email: iulia.belay@yandex.ru
Москва, Оболенск, 142279 Россия
В. С. Тимофеев
Государственный научный центр прикладной микробиологии и биотехнологии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человекаМосква, Оболенск, 142279 Россия
Список литературы
- Le Flèche P., Hauck Y., Onteniente L. et al. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis // BMC Microbiol. 2001. V. 1. № 2. https://doi.org/10.1186/1471-2180-1-2
- Keim P., Gruendike J.M., Klevytska A.M. et al. The genome and variation of Bacillus anthracis // Mol. Aspects Med. 2009. V. 30. № 6. P. 397–405. https://doi.org/10.1016/j.mam.2009.08.005
- Bacterial variable number tandem repeats // Brenner's Encyclopedia of Genetics (Second Edition) / Еds Maloy S., Hughes K. Acad. Press, 2013. P. 274–276. https://doi.org/10.1016/B978-0-12-374984-0.01630-2
- Van Belkum A., Scherer S., van Leeuwen W. et al. Variable number of tandem repeats in clinical strains of Haemophilus influenzae // Infect. Immun. 1997. V. 65. № 12. P. 5017–5027. https://doi.org/10.1128/iai.65.12.5017-5027.1997
- Frothingham R., Meeker-O'Connell W.A. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats // Microbiology. 1998. V. 144. Pt. 5. P. 1189–1196. https://doi.org/10.1099/00221287-144-5-1189
- Adair D.M., Worsham P.L., Hill K.K. et al. Diversity in a variable-number tandem repeat from Yersinia pestis // J. Clin. Microbiol. 2000. V. 38. № 4. P. 1516–1519. https://doi.org/10.1128/JCM.38.4.1516-1519.2000
- Keim P., Price L.B., Klevytska A.M. et al. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis // J. Bacteriol. 2000. V. 182. № 10. P. 2928–2936. https://doi.org/10.1128/JB.182.10.2928-2936.2000
- Fleischmann R.D., Adams M.D., White O. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd // Science. 1995. V. 269. № 5223. P. 496–512. https://doi.org/10.1126/science.7542800
- Le Flèche P., Fabre M., Denoeud F. et al. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing // BMC Microbiol. 2002. V. 2. https://doi.org/10.1186/1471-2180-2-37
- Ciammaruconi A., Grassi S., De Santis R. et al. Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR analysis // BMC Microbiol. 2008. V. 8. https://doi.org/10.1186/1471-2180-8-21
- Pourcel C., André-Mazeaud F., Neubauer H. et al. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis // BMC Microbiol. 2004. V. 4. https://doi.org/10.1186/1471-2180-4-22
- Van Ham S.M., van Alphen L., Mooi F.R. et al. Phase variation of H. influenzae fimbriae: Transcriptional control of two divergent genes through a variable combined promoter region // Cell. 1993. V. 73. № 6. P. 1187–1196. https://doi.org/10.1016/0092-8674(93)90647-9
- Weiser J.N., Love J.M., Moxon E.R. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide // Cell. 1989. V. 59. № 4. P. 657–665. https://doi.org/10.1016/0092-8674(89)90011-1
- Moxon E.R., Rainey P.B. Pathogenic bacteria: The wisdom of their genes // Ecology of Pathogenic Bacteria. Amsterdam, Netherlands: Royal Dutch Acad. Sci., 1995. P. 255–268.
- Wilton J.L., Scarman A.L., Walker M.J. et al. Reiterated repeat region variability in the ciliary adhesin gene of Mycoplasma hyopneumoniae // Microbiology. 1998. V. 144. Pt. 7. P. 1931–1943. https://doi.org/10.1099/00221287-144-7-1931
- Wang G., Ge Z., Rasko D.A. et al. Lewis antigens in Helicobacter pylori: Biosynthesis and phase variation // Mol. Microbiol. 2000. V. 36. № 6. P. 1187–1196. https://doi.org/10.1046/j.1365-2958.2000.01934.x
- Bayliss C.D., Field D., Moxon E.R. The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis // J. Clin. Invest. 2001. V. 107. № 6. P. 657–662. https://doi.org/10.1172/JCI12557
- Van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA) // FEMS Immunol. Med. Microbiol. 2007. V. 49. № 1. P. 22–27. https://doi.org/10.1111/j.1574-695X.2006.00173.x
- Rivas J.M., Speziale P., Patti J.M., Höök M. MSCRAMM – targeted vaccines and immunotherapy for staphylococcal infection // Curr. Opin. Drug Discov. Devel. 2004. V. 7. № 2. P. 223–227.
- Bessen D., Jones K.F., Fischetti V.A. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever // J. Exp. Med. V. 1989. V. 169. № 1. P. 269–283. https://doi.org/10.1084/jem.169.1.269
- Madoff L.C., Michel J.L., Gong E.W. et al. Group B streptococci escape host immunity by deletion of tandem repeat elements of the alpha C protein // Proc. Natl Acad. Sci. USA. 1996. V. 93. № 9. P. 4131–4136. https://doi.org/10.1073/pnas.93.9.4131
- Schupp J.M., Klevytska A.M., Zinser G. et al. VrrB, a hypervariable open reading frame in Bacillus anthracis // J. Bacteriol. 2000. V. 182. № 14. P. 3989–3997. https://doi.org/10.1128/JB.182.14.3989-3997.2000
- Frénay H.M., Bunschoten A.E., Schouls L.M. et al. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism // Eur. J. Clin. Microbiol. Infect. Dis. 1996. V. 15. № 1. P. 60–64. https://doi.org/10.1007/BF01586186
- Stern A., Meyer T.F. Common mechanism controlling phase and antigenic variation in pathogenic neisseriae // Mol. Microbiol. 1987. V. 1. № 1. P. 5–12. https://doi.org/10.1111/j.1365-2958.1987.tb00520.x
- Weiser J.N., Maskell D.J., Butler P.D. et al. Characterization of repetitive sequences controlling phase variation of Haemophilus influenzae lipopolysaccharide // J. Bacteriol. 1990. V. 172. № 6. P. 3304–3309. https://doi.org/10.1128/jb.172.6.3304-3309.1990
- Van Putten J.P. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae // EMBO J. 1993. V. 12. № 11. P. 4043–4051. https://doi.org/10.1002/j.1460-2075.1993.tb06088.x
- De Bolle X., Bayliss C.D., Field D. et al. The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases // Mol. Microbiol. 2000. V. 35. № 1. P. 211–222. https://doi.org/10.1046/j.1365-2958.2000.01701.x
- Andersen G.L., Simchock J.M., Wilson K.H. Identification of a region of genetic variability among Bacillus anthracis strains and related species // J. Bacteriol. 1996. V. 178. № 2. P. 377–384. https://doi.org/10.1128/jb.178.2.377-384.1996
- Keim P., Smith K.L., Keys C. et al. Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan // J. Clin. Microbiol. 2001. V. 39. № 12. P. 4566–4567. https://doi.org/10.1128/JCM.39.12.4566-4567.2001
- Hoffmaster A.R., Fitzgerald C.C., Ribot E. et al. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States // Emerg. Infect. Dis. 2002. V. 8. № 10. P. 1111–1116. https://doi.org/10.3201/eid0810.020394
- Keim P., Kalif A., Schupp J. et al. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers // J. Bacteriol. 1997. V. 179. № 3. P. 818–824. https://doi.org/10.1128/jb.179.3.818-824.1997
- Lista F., Faggioni G., Valjevac S. et al. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis // BMC Microbiol. 2006. V. 6. https://doi.org/10.1186/1471-2180-6-33
- Stratilo C.W., Lewis C.T., Bryden L. et al. Single-nucleotide repeat analysis for subtyping Bacillus anthracis isolates // J. Clin. Microbiol. 2006. V. 44. № 3. P. 777–782. https://doi.org/10.1128/JCM.44.3.777-782.2006
- Beyer W., Bellan S., Eberle G. et al. Distribution and molecular evolution of Bacillus anthracis genotypes in Namibia // PLoS Negl. Trop. Dis. 2012. V. 6. № 3. https://doi.org/10.1371/journal.pntd.0001534
- Antwerpen M., Ilin D., Georgieva E. et al. MLVA and SNP analysis identified a unique genetic cluster in Bulgarian Bacillus anthracis strains // Eur. J. Clin. Microbiol. Infect. Dis. 2011. V. 30. № 7. P. 923–930. https://doi.org/10.1007/s10096-011-1177-2
- Thierry S., Tourterel C., Le Flèche P. et al. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: Epidemiology, marker evaluation, and update of the internet genotype database // PLoS One. 2014. V. 9. № 6. https://doi.org/10.1371/journal.pone.0095131
- Van Ert M.N., Easterday W.R., Huynh L.Y. et al. Global genetic population structure of Bacillus anthracis // PLoS One. 2007. V. 2. № 5. https://doi.org/10.1371/journal.pone.0000461
- Sylvestre P., Couture-Tosi E., Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium // Mol. Microbiol. 2002. V. 45. № 1. P. 169–178. https://doi.org/10.1046/j.1365-2958.2000.03000.x
- Castanha E.R., Swiger R.R., Senior B. et al. Strain discrimination among B. anthracis and related organisms by characterization of bclA polymorphisms using PCR coupled with agarose gel or microchannel fluidics electrophoresis // J. Microbiol. Methods. 2006. V. 64. № 1. P. 27–45. https://doi.org/10.1016/j.mimet.2005.04.032
- Leski T.A., Caswell C.C., Pawlowski M. et al. Identification and classification of bcl genes and proteins of Bacillus cereus group organisms and their application in Bacillus anthracis detection and fingerprinting // Appl. Environ. Microbiol. 2009. V. 75. № 22. P. 7163–7172. https://doi.org/10.1128/AEM.01069-09
- Swick M.C., Koehler T.M., Driks A. Surviving between hosts: Sporulation and transmission // Microbiol. Spectr. 2016. V. 4. № 4. https://doi.org/10.1128/microbiolspec.VMBF-0029-2015
- Steichen C., Chen P., Kearney J.F., Turnbough C.L.Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium // J. Bacteriol. 2003. V. 185. № 6. P. 1903–1910. https://doi.org/10.1128/JB.185.6.1903-1910.2003
- Hoffmaster A.R., Hill K.K., Gee J.E. et al. Characte- rization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes // J. Clin. Microbiol. 2006. V. 44. № 9. P. 3352–3360. https://doi.org/10.1128/JCM.00561-06
- Bath J., Wu L.J., Errington J., Wang J.C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum // Science. 2000. V. 290. № 5493. P. 995–997. https://doi.org/10.1126/science.290.5493.995
- Barua S., McKevitt M., DeGiusti K. et al. The mechanism of Bacillus anthracis intracellular germination requires multiple and highly diverse genetic loci // Infect. Immun. 2009. V. 77. № 1. P. 23–31. https://doi.org/10.1128/IAI.00801-08
- Еременко Е.И., Рязанова А.Г., Писаренко С.В. и др. Новые генетические маркеры для молекулярного типирования штаммов Bacillus anthracis // Пробл. особо опасных инфекций. 2019. № 3. С. 43–50. https://doi.org/10.21055/0370-1069-2019-3-43-50
- Timofeev V., Bakhteeva I., Khlopova K. et al. New Research on the Bacillus anthracis genetic diversity in Siberia // Pathogens. 2023. V. 12. № 10. https://doi.org/10.3390/pathogens12101257
- Fernandes C.G., Moran C.P.Jr., Henriques A.O. Autoregulation of SafA assembly through recruitment of a protein cross-linking enzyme // J. Bacteriol. 2018. V. 200. № 14. https://doi.org/10.1128/JB.00066-18
- Куличенко А.Н., Еременко Е.И., Рязанова А.Г. и др. Биологические свойства и молекулярно-генетическая характеристика штаммов Bacillus anthracis, выделенных во время вспышки сибирской язвы в Ямало-Ненецком автономном округе в 2016 г. // Пробл. особо опасных инфекций. 2017. № 1. С. 94–99. https://doi.org/10.21055/0370-1069-2017-1-94-99
- Goncharova Y.O., Bogun A.G., Bahtejeva I.V. et al. Allelic polymorphism of anthrax pathogenicity factor genes as a means of estimating microbiological risks associated with climate change // Appl. Biochem. Mic- robiol. 2022. № 58. P. 382–393. https://doi.org/10.1134/S0003683822040056
- Drysdale M., Bourgogne A., Hilsenbeck S.G., Koeh- ler T.M. AtxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB // J. Bacteriol. 2004. V. 186. № 2. P. 307–315. https://doi.org/10.1128/JB.186.2.307-315.2004
- Valjevac S., Hilaire V., Lisanti O. et al. Comparison of minisatellite polymorphisms in the Bacillus cereus complex: A simple assay for large-scale screening and identification of strains most closely related to Bacillus anthracis // Appl. Environ. Microbiol. 2005. V. 71. № 11. P. 6613–6623. https://doi.org/10.1128/AEM.71.11.6613-6623.2005
- Keim P., Van Ert M.N., Pearson T. et al. Anthrax molecular epidemiology and forensics: Using the appropriate marker for different evolutionary scales // Infect. Genet. Evol. 2004. V. 4. № 3. P. 205–213. https://doi.org/10.1016/j.meegid.2004.02.005
- Garofolo G., Ciammaruconi A., Fasanella A. et al. SNR analysis: Molecular investigation of an anthrax epidemic // BMC Vet. Res. 2010. V. 6. P. 11. https://doi.org/10.1186/1746-6148-6-11
- Kenefic L.J., Beaudry J., Trim C. et al. A high resolution four-locus multiplex single nucleotide repeat (SNR) genotyping system in Bacillus anthracis // J. Microbiol. Methods. 2008. V. 73. № 3. P. 269–272. https://doi.org/10.1016/j.mimet.2007.11.014
- Hemalatha G.R., Rao D.S., Guruprasad L. Identification and analysis of novel amino-acid sequence repeats in Bacillus anthracis str. Ames proteome using computational tools // Comp. Funct. Genomics. 2007. V. 2007. https://doi.org/10.1155/2007/47161
- Kobe B., Deisenhofer J. The leucine-rich repeat: A versatile binding motif // Trends Biochem. Sci. 1994. V. 19. № 10. P. 415–421. https://doi.org/10.1016/0968-0004(94)90090-6
- Aravind L., Koonin E.V. SAP – a putative DNA-binding motif involved in chromosomal organization // Trends Biochem. Sci. 2000. V. 25. № 3. P. 112–114. https://doi.org/10.1016/s0968-0004(99)01537-6
- Clair G., Roussi S., Armengaud J., Duport C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions // Mol. Cell Proteomics. 2010. V. 9. № 7. P. 1486–1498. https://doi.org/10.1074/mcp.M000027-MCP201
- Duport C., Jobin M., Schmitt P. Adaptation in Bacillus cereus: From stress to disease // Front Microbiol. 2016. V. 7. https://doi.org/10.3389/fmicb.2016.01550
- Massey T.H., Mercogliano C.P., Yates J. et al. Double-stranded DNA translocation: Structure and mechanism of hexameric FtsK // Mol. Cell. 2006. V. 23. № 4. P. 457–469. https://doi.org/10.1016/j.molcel.2006.06.019
- Anantharaman V., Aravind L. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes // Genome Biol. 2003. V. 4. № 2. https://doi.org/10.1186/gb-2003-4-2-r11
Дополнительные файлы


