Analysis of polymorphic variants of cholinergic receptor genes in type 2 diabetes mellitus
- Autores: Kochetova O.V.1,2, Avsaleydiniva D.S.2, Kochetova T.M.2, Akhmadishina L.Z.1, Korytina G.F.1,2
-
Afiliações:
- Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State Medical University
- Edição: Volume 61, Nº 4 (2025)
- Páginas: 76-85
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/289519
- DOI: https://doi.org/10.31857/S0016675825040087
- EDN: https://elibrary.ru/UAJLHK
- ID: 289519
Citar
Resumo
Obesity and addictive eating behaviours represent significant causal factors in the development of type 2 diabetes mellitus. Genes encoding muscarinic and nicotinic receptors have been demonstrated to be significant associated with a wide range of psychiatric disorders. Consequently, these genes represent potential markers for the study of predisposition to both disturbed eating behaviour and type 2 diabetes mellitus (T2DM). A total of 992 DNA samples from individuals with T2DM and 1,023 DNA samples from healthy controls were examined. A DEBQ-based assessment of eating behaviour was conducted. The following polymorphic loci were investigated by real-time PCR: CHRNA5 (rs16969968), CHRNA3 (rs1051730), CHRNB4 (rs17487223), CHRM4 (rs206748), CHRNA3 (rs578776), CHRM5 (rs7162140), CHRM1 (rs2067477), CHRNA7 (rs3826029). The present study found an association between the T2DM and the following genetic variants: CHRNA5 rs16969968 (P = 0.00001, OR = 1.72), CHRNA3 rs1051730 (P = 0.00001, OR = 1.812), CHRM5 rs7162140 (P = 0.051, OR = 1.90), and CHRM1 rs2067477 (P = 0.003, OR = 1.41). It was shown an association between the AA haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730) and the AAT haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730 – CHRNB4 rs17487223) with the T2DM (P = 0.0004, OR = 1.37; P = 0.00005, OR = 1.34). The CHRNA3 rs578776, CHRNA7 rs3826029, CHRM5 rs7162140 and CHRM1 rs2067477 loci were found to be associated with Restrictive eating behaviour (P = 0.05, 0.003, 0.015, 0.05 respectively). Additionally, the CHRM1 rs2067477 locus was found to be associated with Emotional eating behaviour (P = 0.014), while the CHRNA5 rs16969968 and CHRNB4 rs17487223 gene polymorphisms were found to be associated with External eating behavior (P = 0.05, P = 0.036). The study revealed an association between polymorphic variants of the studied genes and both disturbed eating behaviour and T2DM.
Texto integral

Sobre autores
O. Kochetova
Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
Rússia, Ufa; UfaD. Avsaleydiniva
Bashkir State Medical University
Email: Olga_MK78@mail.ru
Rússia, Ufa
T. Kochetova
Bashkir State Medical University
Email: Olga_MK78@mail.ru
Rússia, Ufa
L. Akhmadishina
Ufa Federal Research Centre of the Russian Academy of Sciences
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
Rússia, UfaG. Korytina
Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Autor responsável pela correspondência
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
Rússia, Ufa; UfaBibliografia
- Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск // Сахарный диабет. 2022. T. 24. 1S. C. 1–148.
- Halban P.A., Polonsky K.S., Bowden N.W. et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment // J. Clin. Endocrinol. Metab. 2014. № 99. P. 1983–1992. https://doi.org/10.1210/jc.2014-1425
- Zhu Z., Guo Y., Shi H. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank // J. Allergy Clin. Immunol. 2020. V. 145. № 2. P. 537–549. https://doi.org/10.1016/j.jaci.2019.09.035
- Ahrén B. Autonomic regulation of islet hormone secretion – implications for health and disease // Diabetologia. 2000. № 43. P. 393–410. https://doi.org/10.1007/s001250051322
- Lausier J., Diaz W.C., Roskens V. et al. Vagal control of pancreatic ß-cell proliferation // Am. J. Physiol. Metab. 2010. № 299. P. E786–E793. https://doi.org/10.1152/ajpendo.00202.2010
- Guo Y., Traurig M., Ma L. et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians // Diabetes. 2006. V. 55. P. 3625–3629. https://doi.org/10.2337/db06-0379
- Gilon P., Henquin J.C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function // Endocr. Rev. 2001. V. 22. № 5. P. 565–604. https://doi.org/10.1210/edrv.22.5.0440
- Ganic E., Singh T., Luan C. et al. MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with type 2 diabetes // Cell Rep. 2016. V. 14. P. 1991–2002. https://doi.org/10.1016/j.celrep.2016.02.002
- Gausserès B., Liu J., Foppen E. et al. The constitutive lack of α7 nicotinic receptor leads to metabolic disorders in mouse // Biomolecules. 2020. V. 10. № 7. https://doi.org/10.3390/biom10071057
- Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
- Haghighatfard A., Ghaderi A.H., Mostajabi P. et al. The first genome-wide association study of internet addiction; revealed substantial shared risk factors with neurodevelopmental psychiatric disorders // Res. Dev. Disabil. 2023. V. 133. https://doi.org/10.1016/j.ridd.2022.104393
- Kochetova O.V., Avzaletdinova D.S., Korytina G.F. et al. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus // Mol. Biol. Reports. 2020. V. 47. № 3. P. 2035–2046.
- Timasheva Y., Balkhiyarova Z., Avzaletdinova D. et al. Mendelian randomization analysis identifies inverse causal relationship between external eating and metabolic phenotypes // Nutrients. 2024. V. 16. № 8. P. 1166.
- Korytina G.F., Akhmadishina L.Z., Viktorova E.V. et al. IREB2, CHRNA5, CHRNA3, FAM13A hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia // Indian J. Med. Res. 2016. V. 144. № 6. P. 865–876. https://doi.org/10.4103/ijmr.IJMR_1233_14
- Abdellaoui A., Smit D., van den Brink W. et al. Genomic relationships across psychiatric disorders including substance use disorders // Drug Alcohol Depend. 2021. V. 220. https://doi.org/10.1016/j.drugalcdep.2021.108535
- Duncan L., Deisseroth K. Are novel treatments for brain disorders hiding in plain sight? // Neuropsychopharmacol. 2024. V. 49. P. 276–281. https://doi.org/10.1038/s41386-023-01636-x
- Osipov A.V., Averin A.S., Shaykhutdinova E.R. et al. Muscarinic and nicotinic acetylcholine receptors in the regulation of the cardiovascular system // Russ. J. Bioorganic Chem. 2023. V. 49. № 1. P. 1–18.
- Culverhouse R.C., Chen L.S., Saccone N.L. et al. Variants in the CHRNA5–CHRNA3–CHRNB4 region of chromosome 15 predict gastrointestinal adverse events in the transdisciplinary tobacco use research center smoking cessation trial // Nicotine Tob. Res. 2020. V. 6. № 2. P. 248–255. https://doi.org/10.1093/ntr/ntz044
- Oliveri A., Rebernick R.J., Kuppa A., Pant A. et al. Comprehensive genetic study of the insulin resistance marker TG: HDL-C in the UK Biobank // Nat. Genet. 2024. V. 56. № 2. P. 212–221. https://doi.org/10.1038/s41588-023-01625-2
- Freathy R.M., Kazeem G.R., Morris R.W. et al. Genetic variation at CHRNA5–CHRNA3–CHRNB4 interacts with smoking status to influence body mass index // Int. J., Epidem. 2011. V. 40. № 6. P. 1617–1628.
- Changeux J.-P. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily // J. Biol. Chem. 2012. V. 287. P. 40207–40215. https://doi.org/10.1074/jbc.R112.407668
- Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
- Hall E., Dekker Nitert M., Volkov P. et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets // Mol. Cell. Endocrinol. 2018. V. 5. № 472. P. 57–67. https://doi.org/10.1016/j.mce.2017.11.019
- Chen J., Loukola A., Gillespie N.A. et al. Genome-wide meta-analyses of FTND and TTFC phenotypes // Nicotine Tob. Res. 2020. V. 26–22. № 6. P. 900–909. https://doi.org/10.1093/ntr/ntz09
- Brazel D.M., Jiang Y., Hughey J.M. et al. Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use // Biol. Psychiatry. 2019. V. 85. № 11. P. 946–955. https://doi.org/10.1016/j.biopsych.2018.11.024
- Cole J.B., Florez J.C., Hirschhorn J.N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations // Nat. Communications. 2020. V. 1. P. 1467. https://doi.org/10.1038/s41467-020-15193-0
- Донецкова А.Д., Митин А.Н. Роль транскрипционных факторов Foxo в поддержании гомеостаза Т-лимфоцитов // Иммунология. 2017. V. 38. № 3. P. 160–167.
- Özdemir F., Kır Y., Tok K.C. et al. A novel genotyping method for detection of the muscarinic receptor M1 gene rs2067477 polymorphism and its genotype/allele frequencies in a Turkish population // Turk. J. Pharm. Sci. 2020. V. 17. № 6. P. 653–658. https://doi.org/10.4274/tjps.galenos.2019.46793
- Kır Y., Baskak B., Kuşman A. et al. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia // Psychiatry Res. Neuroimaging. 2020. V. 303. https://doi.org/10.1016/j.pscychresns.2020.111128
- Anney R.J., Lotfi-Miri M., Olsson C.A. et al. Variation in the gene coding for the M5 muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: Evidence from a prospective population based cohort study of young adults // BMC Genet. 2007. V. 8. https://doi.org/10.1186/1471-2156-8-46
- Wu Z., Nicoll M., Ingham R.J. AP-1 family transcription factors: A diverse family of proteins that regulate varied cellular activities in classical Hodgkin lymphoma and ALK+ ALCL // Exp. Hematol. Oncol. 2021. V. 10. № 4. https://doi.org/10.1186/s40164-020-00197-9
- Calabrò M., Mandelli L., Crisafulli C. et al. Genes involved in neurodevelopment, neuroplasticity, and bipolar Disorder: CACNA1C, CHRNA1, and MAPK1 // Neuropsychobiology. 2016. V. 74. № 3. P. 159–168. https://doi.org/10.1159/000468543
- Maouche K., Polette M., Jolly T. et al. α7 Nicotinic acetylcholine receptor Regulates airway epithelium differentiation by controlling basal cell proliferation // Am. J. Pathol. 2009. V. 175. P. 1868–1882. https://doi.org/10.2353/ajpath.2009.090212
- Catassi A., Servent D., Paleari L. et al. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: Implications on lung carcinogenesis // Mutat. Res. 2008. V. 659. P. 221–231. https://doi.org/10.1016/j.mrrev.2008.04.002
- Wang X., Yang Z., Xue B., Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance // Endocrinology. 2011. V. 152. P. 836–846. https://doi.org/10.1210/en.2010-0855
- Cancello R., Zulian A., Maestrini S. et al. The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: Downregulation in human obesity and modulation by diet-induced weight loss // Int. J. Obes. 2012. V. 36. P. 1552–1557. https://doi.org/10.1038/ijo.2011.275
- Xu T.-Y., Guo L.-L., Wang P. et al. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0051217
Arquivos suplementares
