Analysis of polymorphic variants of cholinergic receptor genes in type 2 diabetes mellitus
- 作者: Kochetova O.V.1,2, Avsaleydiniva D.S.2, Kochetova T.M.2, Akhmadishina L.Z.1, Korytina G.F.1,2
-
隶属关系:
- Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State Medical University
- 期: 卷 61, 编号 4 (2025)
- 页面: 76-85
- 栏目: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/289519
- DOI: https://doi.org/10.31857/S0016675825040087
- EDN: https://elibrary.ru/UAJLHK
- ID: 289519
如何引用文章
详细
Obesity and addictive eating behaviours represent significant causal factors in the development of type 2 diabetes mellitus. Genes encoding muscarinic and nicotinic receptors have been demonstrated to be significant associated with a wide range of psychiatric disorders. Consequently, these genes represent potential markers for the study of predisposition to both disturbed eating behaviour and type 2 diabetes mellitus (T2DM). A total of 992 DNA samples from individuals with T2DM and 1,023 DNA samples from healthy controls were examined. A DEBQ-based assessment of eating behaviour was conducted. The following polymorphic loci were investigated by real-time PCR: CHRNA5 (rs16969968), CHRNA3 (rs1051730), CHRNB4 (rs17487223), CHRM4 (rs206748), CHRNA3 (rs578776), CHRM5 (rs7162140), CHRM1 (rs2067477), CHRNA7 (rs3826029). The present study found an association between the T2DM and the following genetic variants: CHRNA5 rs16969968 (P = 0.00001, OR = 1.72), CHRNA3 rs1051730 (P = 0.00001, OR = 1.812), CHRM5 rs7162140 (P = 0.051, OR = 1.90), and CHRM1 rs2067477 (P = 0.003, OR = 1.41). It was shown an association between the AA haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730) and the AAT haplotype (CHRNA5 rs16969968 – CHRNA3 rs1051730 – CHRNB4 rs17487223) with the T2DM (P = 0.0004, OR = 1.37; P = 0.00005, OR = 1.34). The CHRNA3 rs578776, CHRNA7 rs3826029, CHRM5 rs7162140 and CHRM1 rs2067477 loci were found to be associated with Restrictive eating behaviour (P = 0.05, 0.003, 0.015, 0.05 respectively). Additionally, the CHRM1 rs2067477 locus was found to be associated with Emotional eating behaviour (P = 0.014), while the CHRNA5 rs16969968 and CHRNB4 rs17487223 gene polymorphisms were found to be associated with External eating behavior (P = 0.05, P = 0.036). The study revealed an association between polymorphic variants of the studied genes and both disturbed eating behaviour and T2DM.
全文:

作者简介
O. Kochetova
Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa; UfaD. Avsaleydiniva
Bashkir State Medical University
Email: Olga_MK78@mail.ru
俄罗斯联邦, Ufa
T. Kochetova
Bashkir State Medical University
Email: Olga_MK78@mail.ru
俄罗斯联邦, Ufa
L. Akhmadishina
Ufa Federal Research Centre of the Russian Academy of Sciences
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, UfaG. Korytina
Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University
编辑信件的主要联系方式.
Email: Olga_MK78@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa; Ufa参考
- Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск // Сахарный диабет. 2022. T. 24. 1S. C. 1–148.
- Halban P.A., Polonsky K.S., Bowden N.W. et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment // J. Clin. Endocrinol. Metab. 2014. № 99. P. 1983–1992. https://doi.org/10.1210/jc.2014-1425
- Zhu Z., Guo Y., Shi H. et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank // J. Allergy Clin. Immunol. 2020. V. 145. № 2. P. 537–549. https://doi.org/10.1016/j.jaci.2019.09.035
- Ahrén B. Autonomic regulation of islet hormone secretion – implications for health and disease // Diabetologia. 2000. № 43. P. 393–410. https://doi.org/10.1007/s001250051322
- Lausier J., Diaz W.C., Roskens V. et al. Vagal control of pancreatic ß-cell proliferation // Am. J. Physiol. Metab. 2010. № 299. P. E786–E793. https://doi.org/10.1152/ajpendo.00202.2010
- Guo Y., Traurig M., Ma L. et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians // Diabetes. 2006. V. 55. P. 3625–3629. https://doi.org/10.2337/db06-0379
- Gilon P., Henquin J.C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function // Endocr. Rev. 2001. V. 22. № 5. P. 565–604. https://doi.org/10.1210/edrv.22.5.0440
- Ganic E., Singh T., Luan C. et al. MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with type 2 diabetes // Cell Rep. 2016. V. 14. P. 1991–2002. https://doi.org/10.1016/j.celrep.2016.02.002
- Gausserès B., Liu J., Foppen E. et al. The constitutive lack of α7 nicotinic receptor leads to metabolic disorders in mouse // Biomolecules. 2020. V. 10. № 7. https://doi.org/10.3390/biom10071057
- Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
- Haghighatfard A., Ghaderi A.H., Mostajabi P. et al. The first genome-wide association study of internet addiction; revealed substantial shared risk factors with neurodevelopmental psychiatric disorders // Res. Dev. Disabil. 2023. V. 133. https://doi.org/10.1016/j.ridd.2022.104393
- Kochetova O.V., Avzaletdinova D.S., Korytina G.F. et al. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus // Mol. Biol. Reports. 2020. V. 47. № 3. P. 2035–2046.
- Timasheva Y., Balkhiyarova Z., Avzaletdinova D. et al. Mendelian randomization analysis identifies inverse causal relationship between external eating and metabolic phenotypes // Nutrients. 2024. V. 16. № 8. P. 1166.
- Korytina G.F., Akhmadishina L.Z., Viktorova E.V. et al. IREB2, CHRNA5, CHRNA3, FAM13A hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia // Indian J. Med. Res. 2016. V. 144. № 6. P. 865–876. https://doi.org/10.4103/ijmr.IJMR_1233_14
- Abdellaoui A., Smit D., van den Brink W. et al. Genomic relationships across psychiatric disorders including substance use disorders // Drug Alcohol Depend. 2021. V. 220. https://doi.org/10.1016/j.drugalcdep.2021.108535
- Duncan L., Deisseroth K. Are novel treatments for brain disorders hiding in plain sight? // Neuropsychopharmacol. 2024. V. 49. P. 276–281. https://doi.org/10.1038/s41386-023-01636-x
- Osipov A.V., Averin A.S., Shaykhutdinova E.R. et al. Muscarinic and nicotinic acetylcholine receptors in the regulation of the cardiovascular system // Russ. J. Bioorganic Chem. 2023. V. 49. № 1. P. 1–18.
- Culverhouse R.C., Chen L.S., Saccone N.L. et al. Variants in the CHRNA5–CHRNA3–CHRNB4 region of chromosome 15 predict gastrointestinal adverse events in the transdisciplinary tobacco use research center smoking cessation trial // Nicotine Tob. Res. 2020. V. 6. № 2. P. 248–255. https://doi.org/10.1093/ntr/ntz044
- Oliveri A., Rebernick R.J., Kuppa A., Pant A. et al. Comprehensive genetic study of the insulin resistance marker TG: HDL-C in the UK Biobank // Nat. Genet. 2024. V. 56. № 2. P. 212–221. https://doi.org/10.1038/s41588-023-01625-2
- Freathy R.M., Kazeem G.R., Morris R.W. et al. Genetic variation at CHRNA5–CHRNA3–CHRNB4 interacts with smoking status to influence body mass index // Int. J., Epidem. 2011. V. 40. № 6. P. 1617–1628.
- Changeux J.-P. The nicotinic acetylcholine receptor: The founding father of the pentameric ligand-gated ion channel superfamily // J. Biol. Chem. 2012. V. 287. P. 40207–40215. https://doi.org/10.1074/jbc.R112.407668
- Ohtani M., Oka T., Badyuk M. et al. Mouse β-TC6 insulinoma cells: High expression of functional α3β4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release // Mol. Pharmacol. 2005. V. 69. P. 899–907. https://doi.org/10.1124/mol.105.014902
- Hall E., Dekker Nitert M., Volkov P. et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets // Mol. Cell. Endocrinol. 2018. V. 5. № 472. P. 57–67. https://doi.org/10.1016/j.mce.2017.11.019
- Chen J., Loukola A., Gillespie N.A. et al. Genome-wide meta-analyses of FTND and TTFC phenotypes // Nicotine Tob. Res. 2020. V. 26–22. № 6. P. 900–909. https://doi.org/10.1093/ntr/ntz09
- Brazel D.M., Jiang Y., Hughey J.M. et al. Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use // Biol. Psychiatry. 2019. V. 85. № 11. P. 946–955. https://doi.org/10.1016/j.biopsych.2018.11.024
- Cole J.B., Florez J.C., Hirschhorn J.N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations // Nat. Communications. 2020. V. 1. P. 1467. https://doi.org/10.1038/s41467-020-15193-0
- Донецкова А.Д., Митин А.Н. Роль транскрипционных факторов Foxo в поддержании гомеостаза Т-лимфоцитов // Иммунология. 2017. V. 38. № 3. P. 160–167.
- Özdemir F., Kır Y., Tok K.C. et al. A novel genotyping method for detection of the muscarinic receptor M1 gene rs2067477 polymorphism and its genotype/allele frequencies in a Turkish population // Turk. J. Pharm. Sci. 2020. V. 17. № 6. P. 653–658. https://doi.org/10.4274/tjps.galenos.2019.46793
- Kır Y., Baskak B., Kuşman A. et al. The relationship between plasma levels of clozapine and N-desmethyclozapine as well as M1 receptor polymorphism with cognitive functioning and associated cortical activity in schizophrenia // Psychiatry Res. Neuroimaging. 2020. V. 303. https://doi.org/10.1016/j.pscychresns.2020.111128
- Anney R.J., Lotfi-Miri M., Olsson C.A. et al. Variation in the gene coding for the M5 muscarinic receptor (CHRM5) influences cigarette dose but is not associated with dependence to drugs of addiction: Evidence from a prospective population based cohort study of young adults // BMC Genet. 2007. V. 8. https://doi.org/10.1186/1471-2156-8-46
- Wu Z., Nicoll M., Ingham R.J. AP-1 family transcription factors: A diverse family of proteins that regulate varied cellular activities in classical Hodgkin lymphoma and ALK+ ALCL // Exp. Hematol. Oncol. 2021. V. 10. № 4. https://doi.org/10.1186/s40164-020-00197-9
- Calabrò M., Mandelli L., Crisafulli C. et al. Genes involved in neurodevelopment, neuroplasticity, and bipolar Disorder: CACNA1C, CHRNA1, and MAPK1 // Neuropsychobiology. 2016. V. 74. № 3. P. 159–168. https://doi.org/10.1159/000468543
- Maouche K., Polette M., Jolly T. et al. α7 Nicotinic acetylcholine receptor Regulates airway epithelium differentiation by controlling basal cell proliferation // Am. J. Pathol. 2009. V. 175. P. 1868–1882. https://doi.org/10.2353/ajpath.2009.090212
- Catassi A., Servent D., Paleari L. et al. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: Implications on lung carcinogenesis // Mutat. Res. 2008. V. 659. P. 221–231. https://doi.org/10.1016/j.mrrev.2008.04.002
- Wang X., Yang Z., Xue B., Shi H. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance // Endocrinology. 2011. V. 152. P. 836–846. https://doi.org/10.1210/en.2010-0855
- Cancello R., Zulian A., Maestrini S. et al. The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: Downregulation in human obesity and modulation by diet-induced weight loss // Int. J. Obes. 2012. V. 36. P. 1552–1557. https://doi.org/10.1038/ijo.2011.275
- Xu T.-Y., Guo L.-L., Wang P. et al. Chronic exposure to nicotine enhances insulin sensitivity through α7 nicotinic acetylcholine receptor-STAT3 pathway // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0051217
补充文件
