Antirestriction proteins: structures, functions and application prospects
- Авторлар: Kudryavtseva A.A.1, Utkina A.A.1, Manukhov I.V.1
-
Мекемелер:
- Moscow Institute of Physics and Technology
- Шығарылым: Том 61, № 9 (2025)
- Беттер: 40-46
- Бөлім: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/353926
- DOI: https://doi.org/10.7868/S3034510325090033
- ID: 353926
Дәйексөз келтіру
Аннотация
Restriction-modification (RM) systems play a crucial role in protecting prokaryotes from the foreign DNA. Genes encoding antirestriction proteins such as ArdA and ArdB are often among the first genes to enter the cell upon infection. Recent studies demonstrated that DNA-mimicking ArdA proteins exhibit specificity to RM systems, meaning they can mimic specific DNA sequences. Moreover, this specificity can be achieved using recently discovered very small DNA-mimicking proteins called sArdA. This suggests promising applications for these DNA-mimicking “almost peptides” in specifically interacting with DNA-binding proteins to regulate intracellular processes. Another class of antirestriction proteins ArdB, appears to act as a universal DNA-binding agent, inhibiting restriction activity of all known type I RM systems, as well as CRISPR/Cas3. These findings could potentially enhance transformation efficiency in hard-to-transform strains.
Негізгі сөздер
Авторлар туралы
A. Kudryavtseva
Moscow Institute of Physics and Technology
Хат алмасуға жауапты Автор.
Email: manukhovi@mail.ru
Moscow oblast, Dolgoprudny, 141707 Russia
A. Utkina
Moscow Institute of Physics and Technology
Email: manukhovi@mail.ru
Moscow oblast, Dolgoprudny, 141707 Russia
I. Manukhov
Moscow Institute of Physics and Technology
Email: manukhovi@mail.ru
Moscow oblast, Dolgoprudny, 141707 Russia
Әдебиет тізімі
- Mushegian A.R. Are there 1031 virus particles on earth, or more, or fewer? // J. Bacteriol. 2020. V. 202. № 9. https://doi.org/10.1128/jb.00052-20
- Tesson F., Hervé A., Mordret E. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes // Nat. Communications. 2022. V. 13. № 1. P. 2561. https://doi.org/10.1038/s41467-022-29864-w
- Loenen W.A.M., Dryden D.T.F., Raleigh E.A., Wil- son G.G. Type I restriction enzymes and their relati- ves // Nucl. Ac. Res. 2014. V. 42. № 1. P. 20–44. https://doi.org/10.1093/nar/gkt1046
- Murray N.E. Type I restriction systems: Sophisticated molecular machines // Microbiol. Reviews. 2000. V. 64. P. 412–434. https://doi.org/10.1128/MMBR.64.2.412-434.2000.
- Dryden D.T.F., Cooper L.P., Murray N.E. Purification and characterization of the methyltransferase from the Type I restriction and modification system of Escherichia coli K12* // J. Biol. Chemistry. 1993. V. 268. P. 13228–13236. https://doi.org/10.1074/jbc.268.19.13228
- Makovets S., Doronina V.A., Murray N.E. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by Type I restriction enzymes // PNAS USA. 1999. V. 96. № 17. https://doi.org/10.1073/pnas.96.17.9684
- Rosenberg J.M., McClarin J.A., Frederick C.A. Structure and recognition mechanism of EcoRI endonuclease // Trends in Biochem. Sci. 1987. V. 12. P. 395–398. https://doi.org/10.1016/0968-0004(87)90223-X
- Piatt S.C., Loparo J.J., Price A.C. The role of noncognate sites in the 1D search mechanism of EcoRI // Biophys. J. 2019. V. 116. № 12. P. 2367–2377. https://doi.org/ 10.1016/j.bpj.2019.04.033
- Krrüger D.H., Reuter M., Hansen S., Schroeder C. Influence of phage T3 and T7 gene functions on a Type III (EcoP1) DNA restriction-modification system in vivo // Mol. & General Genetics. 1982. V. 185. № 3. P. 457–461. https://doi.org/10.1007/BF00331306
- Goldfarb T., Sberro H., Weinstock E. et al. BREX is a novel phage resistance system widespread in microbial genomes // EMBO J. 2015. V. 34. № 2. P. 169–183. https://doi.org/10.15252/embj.201490297
- Gordeeva J., Morozova N., Sierro N. et al. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site // Nucl. Ac. Res. 2019. V. 47. № 1. P. 253–265. https://doi.org/10.1093/nar/gkz1178
- Makarova K.S., Wolf Y.I., Iranzo J. еt al. Evolutio- nary classification of CRISPR-Cas systems: А burst of Class 2 and derived variants // Nat. Reviews Microbiol. 2020. V. 18. № 2. P. 67–83. https://doi.org/10.1038/s41579-019-0299-x
- Sternberg S.H., Richter H., Charpentier E., Qimron U. Adaptation in CRISPR-Cas systems // Mol. Cell. 2016. V. 61. № 6. P. 797–808. https://doi.org/10.1016/j.molcel.2016.01.034
- Mojica F.J.M., Díez-Villaseñor C., GarcÃa-MartÃnez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements // J. Mol. Evol. 2005. V. 60. № 2. P. 174–182. https://doi.org/10.1007/s00239-004-0046-3
- Zavilgelsky G.B., Rastorguev S.M. DNA mimicry by proteins as an effective mechanism for regulation of activity of DNA-dependent enzymes // Biochemistry (Moscow). 2007. V. 72. № 9. P. 913–919. https://doi.org/ 10.1134/S0006297907090016
- Belogurov A.A., Delver E.P., Rodzevich O.V. IncN plasmid pKM101 and IncI1 plasmid ColIb-P9 encode homologous antirestriction proteins in their leading regions // J. Bacteriology. 1992. V. 174. № 15. P. 5079–5085. https://doi.org/10.1128/JB.174.15.5079-5085.1992
- McMahon S.A., Roberts G.A., Johnson K.A. et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance // Nucl. Ac. Res. 2009. V. 37. № 15. P. 4887–4897. https://doi.org/10.1093/nar/gkp507
- Rastorguev S.M., Zavilgelsky G.B. Role of “antirestriction” motif in functional activity of antirestriction protein ArdA pKM101 (IncN) // Russ. J. Genetics. 2003. V. 39. № 2. P. 286–292. https://doi.org/10.1023/A:1022994216828
- Walkinshaw M.D., Taylor P., Sturrock S.S. et al. Structure of Ocr from bacteriophage T7, a protein that mi- mics B-form DNA // Mol. Cell. 2002. V. 9. № 1. P. 187–194. https://doi.org/10.1016/S1097-2765(02)00439-1
- Dunn J.J., Elzinga M., Mark K.K., Studier F.W. Amino acid sequence of the gene 0.3 protein of bacteriophage T7 and nucleotide sequence of its mRNA // J. Biol. Chemistry. 1981. V. 256. № 5. P. 2579–2585. https://doi.org/10.1074/jbc.256.5.2579
- Moffatt B.A., Studier F.W. Entry of bacteriophage T7 DNA into the cell and escape from host restriction // J. Bacteriology. 1988. V. 170. № 5. P. 2095–2105. https://doi.org/10.1128/JB.170.5.2095-2105.1988
- Gladysheva-Azgari M.V., Sharko F.S., Evteeva M.A. et al. ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes // Heliyon. 2023. V. 9. № 12. https://doi.org/10.1016/j.heliyon.2023.e22986
- Serfiotis-Mitsa D., Herbert A.P., Roberts G.A. et al. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against type I DNA restriction systems in vivo but not in vitro // Nucl. Ac. Res. 2009. V. 38. № 5. P. 1723–1737. https://doi.org/10.1093/nar/gkp1178
- Goryanin I.I., Kudryavtseva A.A., Balabanov V.P. et al. Antirestriction activities of KlcA (rp4) and ArdB (r64) proteins // FEMS Microbiol. Letters. 2018. V. 365. № 23. https://doi.org/10.1093/femsle/fny254
- Oke M., Carter L.G., Johnson K.A. et al. Supplementary material the scottish structural proteomics facility: Targets, methods and outputs supporting material the scottish structural proteomics facility, targets, methods and outputs. https://doi.org/10.1038/sdata.2015.44
- Kudryavtseva A.A., Livinyuk V.Yu., Didina V.S. et al. The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein // Mol. Biol. 2017. V. 51. № 5. P. 724–727. https://doi.org/10.1134/S002689331705008X
- Kudryavtseva A.A., Okhrimenko I.S., Didina V.S. et al. Antirestriction protein ArdB (R64) interacts with DNA // Biochemistry (Moscow). 2020. V. 85. № 3. P. 318–325. https://doi.org/10.1134/S0006297920030055
- Balabanov V.P., Kudryavtseva A.A., Melkina O.E. et al. ArdB Рrotective Аctivity for Unmodified Lambda Phage Аgainst EcoKI Restriction Decreases in UV-treated Escherichia coli. V. 76. N.Y.: Springer, LLC, 2019. https://doi.org/10.1007/978-3-030-16357-8_7
- Mol C.D., Arvai A.S., Sanderson R.J. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: Protein mimicry of DNA // Cell. 1995. V. 82. № 5. P. 701–708. https://doi.org/ 10.1016/0092-8674(95)90476-X
- Ramirez B.E., Bax A., Voshin O.N., Camerini-Otero R.D. Solution structure of DinI provides insight into its mode of RecA inactivation // Protein Science. 2000. V. 9. № 11. P. 2161–2169. https://doi.org/10.1110/ps.9.11.2161
- Parsons L.M., Liu F., Orban J. HU-α binds to the putative double-stranded DNA mimic hi1450 from Haemophilus influenzae // Protein Science. 2009. V. 14. № 6. P. 1684–1687. https://doi.org/10.1002/pro.122
- Kudryavtseva A.A., Vlasov A.V., Zinovev E.V. et al. ArdA protein specificity against type I restriction-modification systems // Mol. Biol. 2024. V. 58. № 3. P. 527–533. https://doi.org/10.1134/S0026897324030064
- Utkina A.A., Kudryavtseva A.A., Melkina O.E. et al. A new family of small ArdA proteins reveals an antirestriction activity // BioRxiv. 2025. https://doi.org/10.1101/2025.01.01.522123
- Zavilgelsky G.B. Antirestriction // Mol. Biol. 2000. V. 34. № 5. P. 724–732. https://doi.org/10.1023/A:1004774316694
- Kudryavtseva A.A., Csefalvay E., Gnuchikh E.Y. et al. Broadness and specificity: ArdB, ArdA, and Оcr against various restriction-modification systems // Front. in Microbiology. 2023. V. 14. https://doi.org/10.3389/fmicb.2023.1125374
- Wimmer F., Englert F., Wandera K.G. et al. Interroga- ting two extensively self-targeting type I CRISPR-cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block dna degradation // Nucl. Ac. Res. 2023. V. 52. № 2. P. 769–783. https://doi.org/ 10.1093/nar/gkac1211
- Bubnov D.M., Yuzbashev T.V., Khozov A.A. et al. Robust counterselection and advanced λ red recombineering enable markerless chromosomal integration of large heterologous constructs // Nucl. Ac. Res. 2022. V. 50. № 15. P. 8947–8960. https://doi.org/10.1093/nar/gkab1054
Қосымша файлдар

