Association of the LZTFL1 gene polymorphic marker rs73064425 with severity of COVID-19 and its allele frequencies world-wide distribution
- Authors: Korneeva R.A.1, Trifonova E.A.1,2, Bocharova A.V.1, Gusarova A.A.1, Babovskaya A.A.1, Gavrilenko M.M.1, Gabidulina T.V.2, Zhilyakova O.V.2, Kolesnikov N.A.1, Stepanov V.A.1
-
Affiliations:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- Issue: Vol 61, No 9 (2025)
- Pages: 96-105
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/353932
- DOI: https://doi.org/10.7868/S3034510325090092
- ID: 353932
Cite item
Abstract
Coronavirus disease COVID-19 is an infectious viral disease that has rapidly spread throughout the world and developed into a global pandemic in 2020. The clinical spectrum of COVID-19 is diverse and range from asymptomatic infection to respiratory failure and death. The etiology of COVID-19 clinical course is not well understood. The role of many factors is assumed, including the genetic characteristics of the individual. Replicative association analysis COVID-19 severity with the single nucleotide variant (SNV) rs73064425 of the LZTFL1 gene was performed. According to GWAS this SNV is associated with COVID-19 severe form. The polymorphism rs73064425 was showed a significant association with COVID-19 severe form in the Russian population of Tomsk. Possible mechanisms of the studied SNV involvement in the disease pathogenetics are discussed. Frequencies variability of the risk allele T rs73064425 was found in populations of the world.
About the authors
R. A. Korneeva
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
E. A. Trifonova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia; Tomsk, 634050 Russia
A. V. Bocharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
A. A. Gusarova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
A. A. Babovskaya
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
M. M. Gavrilenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
T. V. Gabidulina
Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
O. V. Zhilyakova
Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
N. A. Kolesnikov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
V. A. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
References
- World Health Organization, 2025. COVID-19 cases. https://data.who.int/dashboards/covid19/cases (accessed: 05.01.2025)
- Flook M., Jackson C., Vasileiou E. et al. Informing the public health response to COVID-19: А systematic review of risk factors for disease, severity, and mortality // BMC Infect. Dis. 2021. V. 21. № 1. P. 342. https://doi.org/ 10.1186/s12879-021-05992-1
- Horowitz J.E., Kosmicki J.A., Damask A. et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease // Nat. Genet. 2022. V. 54. № 4. P. 382–392. https://doi.org/10.1038/s41588-021-01006-7
- Kousathanas A., Pairo-Castineira E., Rawlik K. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19 // Nature. 2022. V. 607. № 7917. P. 97–103. https://doi.org/10.1038/s41586-022-04576-6
- Zhu D., Zhao R., Yuan H. et al. Host gene- tic factors, comorbidities and the Risk of Severe COVID-19 // J. Epidemiol. Glob. Health. 2023. V. 13. № 2. P. 279–291. https://doi.org/10.1007/s44197-023-00106-3
- Pairo-Castineira E., Clohisey S., Klaric L. et al. Genetic mechanisms of critical illness in COVID-19 // Nature. 2021. V. 591. № 7848. P. 92–98. https://doi.org/10.1038/s41586-020-03065-y
- Degenhardt F., Ellinghaus D., Juzenas S. et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations // Hum. Mol. Genet. 2022. V. 31. № 23. P. 3945–3966. https://doi.org/10.1093/hmg/ddac158
- Lin S., Gao X., Degenhardt F. et al. Genome-wide epistasis study highlights genetic interactions influencing severity of COVID-19 // Eur. J. Epidemiol. 2023. V. 38. № 8. P. 883–889. https://doi.org/10.1007/s10654-023-01020-5
- Kovalenko E., Shaheen L., Vergasova E. et al. GWAS and polygenic risk score of severe COVID-19 in Eastern Europe // Front. in Medicine. 2024. № 11. https://doi.org/10.3389/fmed.2024.1409714
- Promchan K., Natarajan V. Leucine zipper transcription factor-like 1 binds adaptor protein complex-1 and 2 and participates in trafficking of transferrin recep- tor 1 // PLoS One. 2020. V. 15. № 1. https://doi.org/10.1371/journal.pone.0226298
- Marion V., Stutzmann F., Gérard M. et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet–Biedl syndrome with situs inversus and insertional polydactyly // J. Med. Genet. 2012. V. 49. № 5. P. 317–321. https://doi.org/10.1136/jmedgenet-2012-100737
- Database GTEx: The Genotype-Tissue Expression. https://gtexportal.org/ (accessed: 15.01.2025)
- Wang L., Guo J., Wang Q. et al. LZTFL1 suppresses gastric cancer cell migration and invasion through regulating nuclear translocation of β-catenin // J. Сancer Res. and Clin. Oncol. 2014. V. 140. № 12. P. 1997–2008. https://doi.org/10.1007/s00432-014-1753-9
- Gutierrez-Chavez C., Aperrigue-Lira S., Ortiz-Saaved- ra B., Paz I. Chemokine receptors in COVID-19 infection // Int. Rev. Cell and Mol. Biol. 2024. V. 388. P. 53–94. https://doi.org/10.1016/bs.ircmb.2024.05.002
- Авдеев С.Н., Адамян Л.В., Алексеева Е.И. и др. Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). 2023. 245 c.
- Wei Q., Chen Z.H., Wang L. et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells // Oncogene. 2016. V. 35. № 20. P. 2655–2663. https://doi.org/10.1038/onc.2015.328
- He J., Cai S., Feng H. et al. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients // Protein Cell. 2020. V. 11. № 9. P. 680–687. https://doi.org/10.1007/s13238-020-00752-4
- Stewart C.A., Gay C.M., Ramkumar K. et al. Lung cancer models reveal severe acute respiratory syndrome Coronavirus 2-induced epithelial-to-mesenchymal transition contributes to Coronavirus disease 2019 pathophysiology // J. Thorac. Oncol. 2021. V. 16. № 11. P. 1821–1839. https://doi.org/10.1016/j.jtho.2021.07.002
- Downes D.J., Cross A.R., Hua P. et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus // Nat. Genet. 2021. V. 53. № 11. P. 1606–1615. https://doi.org/10.1038/s41588-021-00955-3.
- RegulomeDB. Regulome Search. https://regulomedb.org/regulome-search/ (accessed: 15.01.2025)
- eQTLGen Browser. eQTLGen Consortium. https://www.eqtlgen.org/ (accessed: 27.02.2025)
- Pius-Sadowska E., Kulig P., Niedźwiedź A. et al. VEGFR and DPP-IV as markers of severe COVID-19 and predictors of ICU admission // Int. J. Mol. Sci. 2023. V. 24. № 23. https://doi.org/10.3390/ijms242317003
- Nagashima S., Mendes M.C., Camargo Martins A.P. et al. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report // Arteriosclerosis, Thrombosis, and Vascular Biol. 2020. V. 40. № 10. P. 2404–2407. https://doi.org/10.1161/ATVBAHA.120.314860
- Kasela S., Daniloski Z., Bollepalli S. et al. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus // Genome Biol. 2021. V. 22. № 1. P. 242. https://doi.org/10.1186/s13059-021-02454-4
- Payne D.J., Dalal S., Leach R. et al. The CXCR6/CXCL16 axis links inflamm-aging to disease severity in COVID-19 patients // bioRxiv. 2021. https://doi.org/ 10.1101/2021.01.25.428125
- Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26. № 6. P. 842–844. https://doi.org/10.1038/s41591-020-0901-9
- Dai Y., Wang J., Jeong H. et al. Association of CXCR6 with COVID-19 severity: Delineating the host genetic factors in transcriptomic regulation // Hum. Genet. 2021. V. 140. № 9. P. 1313–1328. https://doi.org/10.1007/s00439-021-02305-z
- Wu L., Zhu J., Liu D. et al. An integrative multiomics analysis identifies putative causal genes for COVID-19 severity // Genet. in Med. 2021. V. 23. № 11. P. 2076–2086. https://doi.org/10.1038/s41436-021-01243-5
- GeneCards: The Human Gene Database. Weizmann Institute of Science. https://www.genecards.org/ (accessed: 27.02.2025)
- Yang H., Yuan H., Zhao X. et al. Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent endocytosis entry of SARS-CoV-2 into host cells // Virol. Sin. 2022. V. 37. № 3. P. 380–389. https://doi.org/10.1016/j.virs.2022.03.003
- Rebendenne A., Soulet C., Valadão A. et al. SARS-CoV-2 predation of Golgi-bound PI4P primes the massive activation of the DNA damage response kinase ATM in the cytoplasm // bioRxiv. 2024. https://doi.org/10.1101/2024.12.05.626967
- Vuille-dit-Bille R.N., Camargo S.M., Emmeneg- ger L. et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors // Amino Acids. 2015. V. 47. № 4. P. 693–705. https://doi.org/10.1007/s00726-014-1889-6
- Camargo S.M.R., Vuille-Dit-Bille R.N., Meier C.F., Verrey F. ACE2 and gut amino acid transport // Clin. Sci. 2020. V. 134. № 21. P. 2823–2833. https://doi.org/10.1042/CS20200477
- atSNP: Analyzing the effects of SNPs on transcription factor binding. Univ. Wisconsin–Madison. http://atsnp.biostat.wisc.edu/search (accessed: 27.02.2025)
- Loktionov A., Kobzeva K., Dorofeeva A. et al. GWAS-identified loci are associated with obesity and type 2 diabetes mellitus in patients with severe COVID-19 // Front. in Biosci.-Scholar. 2024. V. 16. № 3. https://doi.org/10.31083/j.fbs1603014
- Traspov A.A., Minashkin M.M., Poyarkov S.V. et al. The rs17713054 and rs1800629 polymorphisms of genes LZTFL1 and TNF are associated with COVID-19 severity // Bull. Russ. State Med. Univ. 2022. №. 6. P. 35–40. https://doi.org/10.24075/brsmu.2022.065
- Pavlova N.I., Bochurov A.A., Alekseev V.A. et al. Frequency of the risk A allele of rs17713054 localized in the 3p21.31 COVID-19 risk locus in the Yakut population // Int. J. Biomed. 2022. V. 12. № 1. P. 155–159. https://doi.org/10.21103/Article12(1)OA19
- Loktionov A.V., Kobzeva K.A., Karpenko A.R. et al. GWAS-significant loci and severe COVID-19: Analysis of associations, link with throm boinflammation syndrome, gene-gene, and gene-environmental interactions // Front. in Genet. 2024. V. 15. https://doi.org/10.3389/fgene.2024.1434681
- Balanovska E.V., Gorin I.O., Petrushenko V.S. et al. Geographic distribution of the LZTFL1SNV markers associated with severe COVID-19 in Russia and worldwide // Bull. Russ. State Med. Univ. 2022. № 5. P. 30–39. https://doi.org/10.24075/brsmu.2022.047
- Magesh S., John D., Li W.T. et al. Disparities in COVID-19 outcomes by race, ethnicity, and socioeconomic status: A systematic-review and meta-analysis // JAMA Network Open. 2021. V. 4. № 11. https://doi.org/10.1001/jamanetworkopen.2021.34147
Supplementary files

