Association of the LZTFL1 gene polymorphic marker rs73064425 with severity of COVID-19 and its allele frequencies world-wide distribution
- 作者: Korneeva R.A.1, Trifonova E.A.1,2, Bocharova A.V.1, Gusarova A.A.1, Babovskaya A.A.1, Gavrilenko M.M.1, Gabidulina T.V.2, Zhilyakova O.V.2, Kolesnikov N.A.1, Stepanov V.A.1
-
隶属关系:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- 期: 卷 61, 编号 9 (2025)
- 页面: 96-105
- 栏目: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/353932
- DOI: https://doi.org/10.7868/S3034510325090092
- ID: 353932
如何引用文章
详细
Coronavirus disease COVID-19 is an infectious viral disease that has rapidly spread throughout the world and developed into a global pandemic in 2020. The clinical spectrum of COVID-19 is diverse and range from asymptomatic infection to respiratory failure and death. The etiology of COVID-19 clinical course is not well understood. The role of many factors is assumed, including the genetic characteristics of the individual. Replicative association analysis COVID-19 severity with the single nucleotide variant (SNV) rs73064425 of the LZTFL1 gene was performed. According to GWAS this SNV is associated with COVID-19 severe form. The polymorphism rs73064425 was showed a significant association with COVID-19 severe form in the Russian population of Tomsk. Possible mechanisms of the studied SNV involvement in the disease pathogenetics are discussed. Frequencies variability of the risk allele T rs73064425 was found in populations of the world.
作者简介
R. Korneeva
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
E. Trifonova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia; Tomsk, 634050 Russia
A. Bocharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
A. Gusarova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
A. Babovskaya
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
M. Gavrilenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
T. Gabidulina
Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
O. Zhilyakova
Siberian State Medical University
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
N. Kolesnikov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
V. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: ekaterina.trifonova@medgenetics.ru
Tomsk, 634050 Russia
参考
- World Health Organization, 2025. COVID-19 cases. https://data.who.int/dashboards/covid19/cases (accessed: 05.01.2025)
- Flook M., Jackson C., Vasileiou E. et al. Informing the public health response to COVID-19: А systematic review of risk factors for disease, severity, and mortality // BMC Infect. Dis. 2021. V. 21. № 1. P. 342. https://doi.org/ 10.1186/s12879-021-05992-1
- Horowitz J.E., Kosmicki J.A., Damask A. et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease // Nat. Genet. 2022. V. 54. № 4. P. 382–392. https://doi.org/10.1038/s41588-021-01006-7
- Kousathanas A., Pairo-Castineira E., Rawlik K. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19 // Nature. 2022. V. 607. № 7917. P. 97–103. https://doi.org/10.1038/s41586-022-04576-6
- Zhu D., Zhao R., Yuan H. et al. Host gene- tic factors, comorbidities and the Risk of Severe COVID-19 // J. Epidemiol. Glob. Health. 2023. V. 13. № 2. P. 279–291. https://doi.org/10.1007/s44197-023-00106-3
- Pairo-Castineira E., Clohisey S., Klaric L. et al. Genetic mechanisms of critical illness in COVID-19 // Nature. 2021. V. 591. № 7848. P. 92–98. https://doi.org/10.1038/s41586-020-03065-y
- Degenhardt F., Ellinghaus D., Juzenas S. et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations // Hum. Mol. Genet. 2022. V. 31. № 23. P. 3945–3966. https://doi.org/10.1093/hmg/ddac158
- Lin S., Gao X., Degenhardt F. et al. Genome-wide epistasis study highlights genetic interactions influencing severity of COVID-19 // Eur. J. Epidemiol. 2023. V. 38. № 8. P. 883–889. https://doi.org/10.1007/s10654-023-01020-5
- Kovalenko E., Shaheen L., Vergasova E. et al. GWAS and polygenic risk score of severe COVID-19 in Eastern Europe // Front. in Medicine. 2024. № 11. https://doi.org/10.3389/fmed.2024.1409714
- Promchan K., Natarajan V. Leucine zipper transcription factor-like 1 binds adaptor protein complex-1 and 2 and participates in trafficking of transferrin recep- tor 1 // PLoS One. 2020. V. 15. № 1. https://doi.org/10.1371/journal.pone.0226298
- Marion V., Stutzmann F., Gérard M. et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet–Biedl syndrome with situs inversus and insertional polydactyly // J. Med. Genet. 2012. V. 49. № 5. P. 317–321. https://doi.org/10.1136/jmedgenet-2012-100737
- Database GTEx: The Genotype-Tissue Expression. https://gtexportal.org/ (accessed: 15.01.2025)
- Wang L., Guo J., Wang Q. et al. LZTFL1 suppresses gastric cancer cell migration and invasion through regulating nuclear translocation of β-catenin // J. Сancer Res. and Clin. Oncol. 2014. V. 140. № 12. P. 1997–2008. https://doi.org/10.1007/s00432-014-1753-9
- Gutierrez-Chavez C., Aperrigue-Lira S., Ortiz-Saaved- ra B., Paz I. Chemokine receptors in COVID-19 infection // Int. Rev. Cell and Mol. Biol. 2024. V. 388. P. 53–94. https://doi.org/10.1016/bs.ircmb.2024.05.002
- Авдеев С.Н., Адамян Л.В., Алексеева Е.И. и др. Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). 2023. 245 c.
- Wei Q., Chen Z.H., Wang L. et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells // Oncogene. 2016. V. 35. № 20. P. 2655–2663. https://doi.org/10.1038/onc.2015.328
- He J., Cai S., Feng H. et al. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients // Protein Cell. 2020. V. 11. № 9. P. 680–687. https://doi.org/10.1007/s13238-020-00752-4
- Stewart C.A., Gay C.M., Ramkumar K. et al. Lung cancer models reveal severe acute respiratory syndrome Coronavirus 2-induced epithelial-to-mesenchymal transition contributes to Coronavirus disease 2019 pathophysiology // J. Thorac. Oncol. 2021. V. 16. № 11. P. 1821–1839. https://doi.org/10.1016/j.jtho.2021.07.002
- Downes D.J., Cross A.R., Hua P. et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus // Nat. Genet. 2021. V. 53. № 11. P. 1606–1615. https://doi.org/10.1038/s41588-021-00955-3.
- RegulomeDB. Regulome Search. https://regulomedb.org/regulome-search/ (accessed: 15.01.2025)
- eQTLGen Browser. eQTLGen Consortium. https://www.eqtlgen.org/ (accessed: 27.02.2025)
- Pius-Sadowska E., Kulig P., Niedźwiedź A. et al. VEGFR and DPP-IV as markers of severe COVID-19 and predictors of ICU admission // Int. J. Mol. Sci. 2023. V. 24. № 23. https://doi.org/10.3390/ijms242317003
- Nagashima S., Mendes M.C., Camargo Martins A.P. et al. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report // Arteriosclerosis, Thrombosis, and Vascular Biol. 2020. V. 40. № 10. P. 2404–2407. https://doi.org/10.1161/ATVBAHA.120.314860
- Kasela S., Daniloski Z., Bollepalli S. et al. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus // Genome Biol. 2021. V. 22. № 1. P. 242. https://doi.org/10.1186/s13059-021-02454-4
- Payne D.J., Dalal S., Leach R. et al. The CXCR6/CXCL16 axis links inflamm-aging to disease severity in COVID-19 patients // bioRxiv. 2021. https://doi.org/ 10.1101/2021.01.25.428125
- Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26. № 6. P. 842–844. https://doi.org/10.1038/s41591-020-0901-9
- Dai Y., Wang J., Jeong H. et al. Association of CXCR6 with COVID-19 severity: Delineating the host genetic factors in transcriptomic regulation // Hum. Genet. 2021. V. 140. № 9. P. 1313–1328. https://doi.org/10.1007/s00439-021-02305-z
- Wu L., Zhu J., Liu D. et al. An integrative multiomics analysis identifies putative causal genes for COVID-19 severity // Genet. in Med. 2021. V. 23. № 11. P. 2076–2086. https://doi.org/10.1038/s41436-021-01243-5
- GeneCards: The Human Gene Database. Weizmann Institute of Science. https://www.genecards.org/ (accessed: 27.02.2025)
- Yang H., Yuan H., Zhao X. et al. Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent endocytosis entry of SARS-CoV-2 into host cells // Virol. Sin. 2022. V. 37. № 3. P. 380–389. https://doi.org/10.1016/j.virs.2022.03.003
- Rebendenne A., Soulet C., Valadão A. et al. SARS-CoV-2 predation of Golgi-bound PI4P primes the massive activation of the DNA damage response kinase ATM in the cytoplasm // bioRxiv. 2024. https://doi.org/10.1101/2024.12.05.626967
- Vuille-dit-Bille R.N., Camargo S.M., Emmeneg- ger L. et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors // Amino Acids. 2015. V. 47. № 4. P. 693–705. https://doi.org/10.1007/s00726-014-1889-6
- Camargo S.M.R., Vuille-Dit-Bille R.N., Meier C.F., Verrey F. ACE2 and gut amino acid transport // Clin. Sci. 2020. V. 134. № 21. P. 2823–2833. https://doi.org/10.1042/CS20200477
- atSNP: Analyzing the effects of SNPs on transcription factor binding. Univ. Wisconsin–Madison. http://atsnp.biostat.wisc.edu/search (accessed: 27.02.2025)
- Loktionov A., Kobzeva K., Dorofeeva A. et al. GWAS-identified loci are associated with obesity and type 2 diabetes mellitus in patients with severe COVID-19 // Front. in Biosci.-Scholar. 2024. V. 16. № 3. https://doi.org/10.31083/j.fbs1603014
- Traspov A.A., Minashkin M.M., Poyarkov S.V. et al. The rs17713054 and rs1800629 polymorphisms of genes LZTFL1 and TNF are associated with COVID-19 severity // Bull. Russ. State Med. Univ. 2022. №. 6. P. 35–40. https://doi.org/10.24075/brsmu.2022.065
- Pavlova N.I., Bochurov A.A., Alekseev V.A. et al. Frequency of the risk A allele of rs17713054 localized in the 3p21.31 COVID-19 risk locus in the Yakut population // Int. J. Biomed. 2022. V. 12. № 1. P. 155–159. https://doi.org/10.21103/Article12(1)OA19
- Loktionov A.V., Kobzeva K.A., Karpenko A.R. et al. GWAS-significant loci and severe COVID-19: Analysis of associations, link with throm boinflammation syndrome, gene-gene, and gene-environmental interactions // Front. in Genet. 2024. V. 15. https://doi.org/10.3389/fgene.2024.1434681
- Balanovska E.V., Gorin I.O., Petrushenko V.S. et al. Geographic distribution of the LZTFL1SNV markers associated with severe COVID-19 in Russia and worldwide // Bull. Russ. State Med. Univ. 2022. № 5. P. 30–39. https://doi.org/10.24075/brsmu.2022.047
- Magesh S., John D., Li W.T. et al. Disparities in COVID-19 outcomes by race, ethnicity, and socioeconomic status: A systematic-review and meta-analysis // JAMA Network Open. 2021. V. 4. № 11. https://doi.org/10.1001/jamanetworkopen.2021.34147
补充文件

