Associations of APOE Genetic Isoforms with Longevity and Risk of Mortality in Human Populations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of hereditary factors on life expectancy up to 60 years of age is rather insignificant, but increases at older ages. Identification of the association of genetic variants with life expectancy and susceptibility to age-related diseases is necessary in the context of genetic heterogeneity of human populations living in different environmental conditions. In this regard, the apolipoprotein E (APOE) gene is of particular interest. This review analyzes the role of different APOE alleles/genotypes for age attainment and associations with longevity in human populations. The ε4 allele is a strictly established genetic risk factor for Alzheimer's disease (AD) in Eurasian populations, and its frequency is significantly reduced in most longevity groups compared to the general population. The rarer ε2 allele is associated with a reduced risk of AD and longevity, as it is more frequent in most longevity groups than in healthy middle-aged individuals. It is of interest to determine whether the different representation of APOE alleles in long-livers, compared with the general population, is dependent or independent of the effect of APOE on the risk of AD or other diseases; what is the role of the APOE genotype on late-life attainment in African populations living in a different setting and in whom a strict association of the ε4 allele with AD has not been found. The questions of at what biological age the ε4 and ε2 alleles have a significant effect on mortality risk are addressed, as well as the role of genetic factors that have a negative or positive effect on the manifestation of the ε4 allele and associated life expectancy.

About the authors

M. N. Abramova

Center for Genetics and Life Science, “Sirius” University of Science and Technology

Author for correspondence.
Email: abramova.mn@talantiuspeh.ru
Krasnodar Region, Urban settlement Sirius, 354340 Russia

V. M. Petrova

Center for Genetics and Life Science, “Sirius” University of Science and Technology

Email: abramova.mn@talantiuspeh.ru
Krasnodar Region, Urban settlement Sirius, 354340 Russia

T. V. Andreeva

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Vavilov Institute of General Genetics Russian Academy of Sciences

Email: abramova.mn@talantiuspeh.ru
Krasnodar Region, Urban settlement Sirius, 354340 Russia; Moscow 119991 Russia

I. Y. Adrianova

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: abramova.mn@talantiuspeh.ru
Moscow 119991 Russia

S. S. Kunizheva

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Vavilov Institute of General Genetics Russian Academy of Sciences

Email: abramova.mn@talantiuspeh.ru
Krasnodar Region, Urban settlement Sirius, 354340 Russia; Moscow 119991 Russia

E. I. Rogaev

Center for Genetics and Life Science, “Sirius” University of Science and Technology; Chan School of Medicine, University of Massachusetts, Department of Psychiatry

Email: abramova.mn@talantiuspeh.ru
Krasnodar Region, Urban settlement Sirius, 354340 Russia; Shrewsbury, 01545 USA

References

  1. Zheng B. The inner link between Apolipoprotein E and the risk of Alzheimer’s disease // MS. 2024. V. 1. № 7. https://doi.org/10.61173/jryn2q59
  2. Li Y.-H., Liu L. Apolipoprotein E synthesized by adi- pocyte and apolipoprotein E carried on lipoproteins modulate adipocyte triglyceride content // Lipids in Health and Dis. 2014. V. 13. P. 136. https://doi.org/10.1186/1476-511X-13-136
  3. Loika Y., Feng F., Loiko E., Kulminski A.M. Mediation of the APOE associations with Alzheimer’s and coro- nary heart diseases through body mass index and li-pids // Geroscience. 2022. V. 44. № 2. P. 1141–1156. https://doi.org/10.1007/s11357-021-00458-3
  4. Mahley R.W. Central nervous system lipoproteins // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. № 7. P. 1305–1315. https://doi.org/10.1161/ATVBAHA.116.307023
  5. Zhang M., Ganz A.B., Rohde S. et al. Resilience and resistance to the accumulation of amyloid plaques and neurofibrillary tangles in centenarians: An age-conti- nuous perspective // Alzheimers Dement. 2023. V. 19. № 7. P. 2831–2841. https://doi.org/10.1002/alz.12899
  6. Andersen S.L. Centenarians as models of resistance and resilience to Alzheimer’s disease and related dementias // Adv. Geriatr. Med. Res. 2020. V. 2. № 3. https://doi.org/10.20900/agmr20200018
  7. Liu Y., Tan Y., Zhang Z. et al. The interaction between ageing and Alzheimer’s disease: Insights from the hallmarks of ageing // Transl. Neurodegener. 2024. V. 13. № 1. P. 7. https://doi.org/10.1186/s40035-024-00397-x
  8. Serrano-Pozo A., Das S., Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysio- logy, and therapeutic approaches. // Lancet Neurol. 2021. V. 20. № 1. P. 68–80. https://doi.org/10.1016/S1474-4422(20)30412-9
  9. Freudenberg-Hua Y., Li W., Abhyankar A. et al. Differential burden of rare protein truncating variants in Alzheimer’s disease patients compared to centenarians // Hum. Mol. Genet. 2016. V. 25. № 14. P. 3096–3105. https://doi.org/10.1093/hmg/ddw150
  10. Zeng Y., Nie C., Min J. et al. Novel loci and pathways significantly associated with longevity // Sci. Rep. 2016. V. 6. P. 21243. https://doi.org/10.1038/srep21243
  11. Lewis S.J., Brunner E.J. Methodological problems in genetic association studies of longevity – the apolipoprotein E gene as an example // Int. J. Epidemiol. 2004. V. 33. № 5. P. 962–970. https://doi.org/10.1093/ije/dyh214
  12. Schächter F., Faure-Delanef L., Guénot F. et al. Genetic associations with human longevity at the APOE and ACE loci // Nat. Genet. 1994. V. 6. № 1. P. 29–32. https://doi.org/10.1038/ng0194-29
  13. Feng J., Xiang L., Wan G. et al. Is APOE ε3 a favou- rable factor for the longevity: an association study in Chinese population // J. Genet. 2011. V. 90. № 2. P. 343–347. https://doi.org/10.1007/s12041-011-0075-9
  14. Louhija J., Miettinen H.E., Kontula K. et al. Aging and genetic variation of plasma apolipoproteins. Relative loss of the apolipoprotein E4 phenotype in centenarians // Arterioscler. Thromb. 1994. V. 14. № 7. P. 1084–1089. https://doi.org/10.1161/01.atv.14.7.1084
  15. Blanché H., Cabanne L., Sahbatou M., Thomas G. A study of French centenarians: are ACE and APOE associated with longevity? // C. R. Acad. Sci. III. 2001. V. 324. № 2. P. 129–135. https://doi.org/10.1016/s0764-4469(00)01274-9
  16. Lindahl-Jacobsen R., Tan Q., Mengel-From J. et al. Effects of the APOE ε2 allele on mortality and cognitive function in the oldest old // J. Gerontol. A. Biol. Sci. Med. Sci. 2013. V. 68. № 4. P. 389–394. https://doi.org/10.1093/gerona/gls192
  17. Ryu S., Atzmon G., Barzilai N. et al. Genetic landscape of APOE in human longevity revealed by high-throughput sequencing // Mech. Ageing Dev. 2016. V. 155. P. 7–9. https://doi.org/10.1016/j.mad.2016.02.010
  18. Garatachea N., Emanuele E., Calero M. et al. ApoE gene and exceptional longevity: Insights from three independent cohorts // Exp. Gerontol. 2014. V. 53. P. 16–23. https://doi.org/10.1016/j.exger.2014.02.004
  19. Castro E., Ogburn C.E., Hunt K.E. et al. Polymorphisms at the Werner locus: I. Newly identified polymorphisms, ethnic variability of 1367Cys/Arg, and its stability in a population of Fin- nish centenarians // Am. J. Med. Genet. 1999. V. 82. № 5. P. 399–403. https://doi.org/ 10.1002/(SICI)1096-8628(19990219)82:5<399::AID-AJMG8>3.0.CO;2-R
  20. Rea I.M., Mc Dowell I., McMaster D. et al. Apolipoprotein E alleles in nonagenarian subjects in the Belfast elderly longitudinal free-living ageing study (BELFAST) // Mech. Ageing Dev. 2001. V. 122. № 13. P. 1367–1372. https://doi.org/10.1016/s0047-6374(01)00278-0
  21. Tindale L.C., Salema D., Brooks-Wilson A.R. 10-year follow-up of the super-seniors study: Compression of morbidity and genetic factors // BMC Geriatr. 2019. V. 19. № 1. P. 58. https://doi.org/10.1186/s12877-019-1080-8
  22. Novelli V., Viviani Anselmi C., Roncarati R. et al. Lack of replication of genetic associations with human longevity // Biogerontology. 2008. V. 9. № 2. P. 85–92. https://doi.org/10.1007/s10522-007-9116-4
  23. Choi Y.-H., Kim J.-H., Kim D.K. et al. Distributions of ACE and APOE polymorphisms and their relations with dementia status in Korean centenarians // J. Gerontol. A Biol. Sci. Med. Sci. 2003. V. 58. № 3. P. 227–231. v10.1093/gerona/58.3.m227
  24. Panza F., Solfrizzi V., Colacicco A.M. et al. Apolipoprotein E (APOE) polymorphism influences serum APOE levels in Alzheimer’s disease patients and centenarians // Neuroreport. 2003. V. 14. № 4. P. 605–608. https://doi.org/10.1097/00001756-200303240-00016
  25. Arai Y., Hirose N., Nakazawa S. et al. Lipoprotein metabolism in Japanese centenarians: effects of apolipoprotein E polymorphism and nutritional status // J. Am. Geriatr. Soc. 2001. V. 49. № 11. P. 1434–1441. https://doi.org/10.1046/j.1532-5415.2001.4911234.x
  26. Silva-Sena G.G., Camporez D., Santos L.R.D. et al. An association study of FOXO3 variant and longevity // Genet. Mol. Biol. 2018. V. 41. № 2. P. 386–396. https://doi.org/10.1590/1678-4685-GMB-2017-0169
  27. Kervinen K., Savolainen M.J., Salokannel J. et al. Apolipoprotein E and B polymorphisms – longevity factors assessed in nonagenarians // Atherosclerosis. 1994. V. 105. № 1. P. 89–95. https://doi.org/10.1016/0021-9150(94)90011-6
  28. Ewbank D.C. Mortality differences by APOE genotype estimated from demographic synthesis // Genet. Epidemiol. 2002. V. 22. № 2. P. 146–155. https://doi.org/10.1002/gepi.0164
  29. Ewbank D.C. The APOE gene and differences in life expectancy in Europe // J. Gerontol. A. Biol. Sci. Med. Sci. 2004. V. 59. № 1. P. 16–20. https://doi.org/10.1093/gerona/59.1.b16
  30. Ewbank D.C. Differences in the association between apolipoprotein E genotype and mortality across populations // J. Gerontol. A Biol. Sci. Med. Sci. 2007. V. 62. № 8. P. 899–907. https://doi.org/10.1093/gerona/62.8.899
  31. Henderson A.S., Easteal S., Jorm A.F. et al. Apolipoprotein E allele epsilon 4, dementia, and cognitive decline in a population sample // Lancet. 1995. V. 346. № 8987. P. 1387–1390. https://doi.org/10.1016/s0140-6736(95)92405-1
  32. Corbo R.M., Scacchi R. Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? // Ann. Hum. Genet. 1999. V. 63. № 4. P. 301–310. https://doi.org/10.1046/j.1469-1809.1999.6340301.x
  33. Corder E.H., Lannfelt L., Viitanen M. et al. Apolipoprotein E genotype determines survival in the oldest old (85 years or older) who have good cognition // Arch. Neurol. 1996. V. 53. № 5. P. 418–422. https://doi.org/10.1001/archneur.1996.00550050048022
  34. Rosvall L., Rizzuto D., Wang H.-X. et al. APOE-related mortality: Effect of dementia, cardiovascular disease and gender // Neurobiol. Aging. 2009. V. 30. № 10. P. 1545–1551. https://doi.org/10.1016/j.neurobiolaging.2007.12.003
  35. Garagnani P., Marquis J., Delledonne M. et al. Whole-genome sequencing analysis of semi-supercentenarians // Elife. 2021. V. 10. https://doi.org/10.7554/eLife.57849
  36. Franceschi C., Bezrukov V., Blanché H. et al. Genetics of healthy aging in Europe // Ann. N. Y. Acad. Sci. 2007. V. 1100. № 1. P. 21–45. https://doi.org/10.1196/annals.1395.003
  37. Napolioni V., Giannì P., Carpi F.M. et al. APOE haplotypes are associated with human longevity in a Central Italy population: Evidence for epistasis with HP 1/2 polymorphism // Clin. Chim. Acta. 2011. V. 412. № 19–20. P. 1821–1824. https://doi.org/10.1016/j.cca.2011.06.012
  38. Fuzikawa A.K., Peixoto S.V., Taufer M. et al. Apolipoprotein E polymorphism distribution in an elderly Brazilian population: The Bambuí Health and Aging Study // Braz. J. Med. Biol. Res. 2007. V. 40. № 11. P. 1429–1434. https://doi.org/10.1590/s0100-879x2007001100002
  39. Vivian L., Bruscato N.M., Werle B.M. et al. Associação de fatores de risco cardiovascular e polimorfismo de APOE com mortalidade em idosos longevos: Uma coorte de 21 anos // Arq. Bras. Cardiol. 2020. V. 115. № 5. P. 873–881. https://doi.org/10.36660/abc.20190263.
  40. Hayden K.M., Zandi P.P., Lyketsos C.G. et al. Apolipoprotein E genotype and mortality: Findings from the Cache County Study // J. Am. Geriatr. Soc. 2005. V. 53. № 6. P. 935–942. https://doi.org/ 10.1111/j.1532-5415.2005.53301.x
  41. Gerdes L.U., Jeune B., Ranberg K.A. et al. Estimation of apolipoprotein E genotype-specific relative morta- lity risks from the distribution of genotypes in centenarians and middle-aged men: Apolipoprotein E gene is a “frailty gene”, not a “longevity gene” // Genet. Epidemiol. 2000. V. 19. № 3. P. 202–210. https://doi.org/ 10.1002/1098-2272(200010)19:3<202::AID-GEPI2>3.0.CO;2-Q
  42. Christensen K., Johnson T.E., Vaupel J.W. The quest for genetic determinants of human longevity: Challenges and insights // Nat. Rev. Genet. 2006. V. 7. № 6. P. 436–448. https://doi.org/10.1038/nrg1871
  43. Jacobsen R., Martinussen T., Christiansen L. et al. Increased effect of the ApoE gene on survival at advanced age in healthy and long-lived Danes: Two nationwide cohort studies // Aging Cell. 2010. V. 9. № 6. P. 1004–1009. https://doi.org/10.1111/j.1474-9726.2010.00626.x
  44. Ajnakina O., Shamsutdinova D., Stahl D., Steptoe A. Polygenic propensity for longevity, APOE-ε4 status, dementia diagnosis, and risk for cause-specific mortality: A large population-based longitudinal study of older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2023. V. 78. № 11. P. 1973–1982. https://doi.org/10.1093/gerona/glad168
  45. Tilvis R.S., Strandberg T.E., Juva K. Apolipoprotein E phenotypes, dementia and mortality in a prospective population sample // J. Am. Geriatr. Soc. 1998. V. 46. № 6. P. 712–715. https://doi.org/10.1111/j.1532-5415.1998.tb03805.x
  46. Home | National institute on aging: Baltimore Longitudinal Study of Aging [Electronic resource]. https://www.blsa.nih.gov/ (accessed: 20.12.2024)
  47. Beydoun M.A., Beydoun H.A., Kaufman J.S. et al. Apolipoprotein E ε4 allele interacts with sex and cognitive status to influence all-cause and cause-specific mortality in U.S. older adults // J. Am. Geriatr. Soc. 2013. V. 61. № 4. P. 525–534. https://doi.org/10.1111/jgs.12156
  48. Shadyab A.H., Kooperberg C., Reiner A.P. et al. Replication of genome-wide association study findings of longevity in White, African American, and Hispanic women: the women’s health initiative // J. Gerontol. A Biol. Sci. Med. Sci. 2017. V. 72. № 10. P. 1401–1406. https://doi.org/10.1093/gerona/glw198
  49. Farrer L.A., Cupples L.A., Haines J.L. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer disease meta-analysis consortium // JAMA. 1997. V. 278. № 16. P. 1349–1356. https://doi.org/10.1001/jama.1997.03550160069041
  50. Masemola M.L., Alberts M., Urdal P. Apolipoprotein E genotypes and their relation to lipid levels in a rural South African population // Scand. J. Public Health Suppl. 2007. V. 69. P. 60–65. https://doi.org/10.1080/14034950701355635
  51. Willis F., Graff-Radford N., Pinto M. et al. Apolipoprotein epsilon 4 allele frequency in young Africans of Ugandan descent versus African Americans. // J. Natl. Med. Assoc. 2003. V. 95. № 1. P. 71–76.
  52. Kalaria R.N., Ogeng’o J.A., Patel N.B. et al. Evaluation of risk factors for Alzheimer’s disease in elderly east Africans // Brain Res. Bull. 1997. V. 44. № 5. P. 573–577. https://doi.org/10.1016/s0361-9230(97)00310-9
  53. Lee J.H., Tang M.X., Schupf N. et al. Mortality and apolipoprotein E in Hispanic, African-American, and Caucasian elders // Am. J. Med. Genet. 2001. V. 103. № 2. P. 121–127. https://doi.org/10.1002/ajmg.1528
  54. Pablos-Méndez A., Mayeux R., Ngai C. et al. Association of apo E polymorphism with plasma lipid levels in a multiethnic elderly population // Arterioscler. Thromb. Vasc. Biol. 1997. V. 17. № 12. P. 3534–3541. https://doi.org/10.1161/01.atv.17.12.3534
  55. Pham T.M., Petersen I., Walters K. et al. Trends in dementia diagnosis rates in UK ethnic groups: analysis of UK primary care data // Clin. Epidemiol. 2018. V. 10. P. 949–960. https://doi.org/10.2147/CLEP.S152647
  56. Kamboh M.I., Sepehrnia B., Ferrell R.E. Genetic studies of human apolipoproteins. VI. Common polymorphism of apolipoprotein E in blacks // Dis. Markers. 1989. V. 7. № 1. P. 49–55.
  57. Mayeux R., Stern Y., Ottman R. et al. The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease // Ann. Neurol. 1993. V. 34. № 5. P. 752–754. https://doi.org/10.1002/ana.410340527
  58. Osuntokun B.O., Sahota A., Ogunniyi A.O. et al. Lack of an association between apolipoprotein E ε4 and Alzheimer’s disease in elderly nigerians // Ann. Neurol. 1995. V. 38. № 3. P. 463–465. https://doi.org/ 10.1002/ana.410380319
  59. Naslavsky M.S., Suemoto C.K., Brito L.A. et al. Global and local ancestry modulate APOE association with Alzheimer’s neuropathology and cognitive outcomes in an admixed sample // Mol. Psychiatry. Nature Publ. Group. 2022. V. 27. № 11. P. 4800–4808. https://doi.org/10.1038/s41380-022-01729-x
  60. Hsia S.H., Connelly P.W., Hegele R.A. Restriction isotyping of apolipoprotein E R145C in type III hyperlipoproteinemia // J. Investig. Med. 1995. V. 43. № 2. P. 187–194.
  61. Abou Ziki M.D., Strulovici-Barel Y., Hackett N.R. et al. Prevalence of the ApoE Arg145Cys dyslipidemia at-risk polymorphism in African-derived populations // Am. J. Cardiol. 2014. V. 113. № 2. P. 302–308. https://doi.org/10.1016/j.amjcard.2013.09.021
  62. Le Guen Y., Raulin A.-C., Logue M.W. et al. Association of African ancestry–specific APOE missense variant R145C with risk of Alzheimer disease // JAMA. 2023. V. 329. № 7. P. 551–560. https://doi.org/10.1001/jama.2023.0268
  63. Rajabli F., Beecham G.W., Hendrie H.C. et al. A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer’s disease in African ancestry // PLoS Ge- net. 2022. V. 18. № 7. https://doi.org/10.1371/journal.pgen.1009977
  64. Beyer K., Lao J.I., Gómez M. et al. Identification of a protective allele against Alzheimer disease in the APOE gene promoter // Neuroreport. 2002. V. 13. № 11. P. 1403–1405. https://doi.org/10.1097/00001756-200208070-00011
  65. Beyer K., Lao J.I., Gómez M. et al. The Th1/E47cs-G apolipoprotein E (APOE) promoter allele is a risk factor for Alzheimer disease of very later onset // Neurosci. Lett. 2002. V. 326. № 3. P. 187–190. https://doi.org/10.1016/s0304-3940(02)00355-5
  66. Lambert J.C., Pasquier F., Cottel D. et al. A new polymorphism in the APOE promoter associated with risk of developing Alzheimer's disease // Hum. Mol. Genet. 1998. V. 7. №. 3. P. 533–540. https://doi.org/10.1093/hmg/7.3.533
  67. Lambert J.C., Berr C., Delacourte A. et al. Pronounced impact of Th1/E47cs mutation compared with – 491 AT mutation on neural APOE gene expression and risk of developing Alzheimer's disease // Hum. Mol. Genet. 1998. V. 7. № 9. P. 1511–1156. https://doi.org/10.1093/hmg/7.9.1511
  68. Lambert J.C., Araria-Goumidi L., Myllykangas L. et al. Contribution of APOE promoter polymorphisms to Alzheimer’s disease risk // Neurology. 2002. V. 59. № 1. P. 59–66. https://doi.org/10.1212/WNL.59.1.59
  69. Ma C., Zhang Y., Li X. et al. Is there a significant interaction between APOE rs405509 T/T, and e4 genotypes on cognitive impairment and gray matter volume? // Europ. J. Neurology. 2016. V. 23. № 9. P. 1415. https://doi.org/10.1111/ene.13052
  70. Bullido M.J., Artiga M.J., Recuero M. et al. A polymorphism in the regulatory region of APOE associa- ted with risk for Alzheimer’s dementia // Nat. Genet. 1998. V. 18. № 1. P. 69–71. https://doi.org/10.1038/ng0198-69
  71. Le Guen Y., Belloy M.E., Grenier-Boley B. et al. Association of rare APOE missense variants V236E and R251G with risk of Alzheimer disease // JAMA Neurol. 2022. V. 79. № 7. P. 652–663. https://doi.org/10.1001/jamaneurol.2022.1166
  72. Arboleda-Velasquez J.F., Lopera F., O’Hare M. et al. Resistance to autosomal dominant Alzheimer’s in an APOE3-Christchurch homozygote: A case report // Nat. Med. 2019. V. 25. № 11. P. 1680–1683. https://doi.org/ 10.1038/s41591-019-0611-3
  73. Rauch J.N., Chen J.J., Sorum A.W. et al. Tau internalization is regulated by 6-O sulfation on heparan sulfate proteoglycans (HSPGs) // Sci. Rep. 2018. V. 8. P. 6382. https://doi.org/10.1038/s41598-018-24904-z
  74. Nelson M.R., Liu P., Agrawal A. et al. The APOE-R136S mutation protects against APOE4-driven tau pathology, neurodegeneration and neuroinflammation // Nat. Neurosci. Nature Publ. Group. 2023. V. 26. № 12. P. 2104–2121. https://doi.org/10.1038/s41593-023-01480-8
  75. Miller B., Kim S.-J., Cao K. et al. Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology // Aging Cell. 2024. V. 23. № 7. https://doi.org/10.1111/acel.14153
  76. Mise A., Yoshino Y., Yamazaki K. et al. TOMM40 and APOE gene expression and cognitive decline in Japanese Alzheimer’s disease subjects // J. Alzheimers Dis. 2017. V. 60. № 3. P. 1107–1117. https://doi.org/10.3233/JAD-170361
  77. Linnertz C., Anderson L., Gottschalk W. et al. The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and APOE genes // Alzheimers Dement. 2014. V. 10. № 5. P. 541–551. https://doi.org/10.1016/j.jalz.2013.08.280
  78. Harold D., Abraham R., Hollingworth P. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes // Nat. Genet. 2009. V. 41. № 10. P. 1088–1093. https://doi.org/10.1038/ng.440
  79. Jazwinski S.M., Kim S., Dai J. et al. HRAS1 and LASS1 with APOE are associated with human longe- vity and healthy aging // Aging Cell. 2010. V. 9. № 5. P. 698–708. https://doi.org/10.1111/j.1474-9726.2010.00600.x
  80. Seripa D., Franceschi M., Matera M.G. et al. Sex differences in the association of apolipoprotein E and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: A population-based study from Southern Italy // J. Gerontol. A Biol. Sci. Med. Sci. 2006. V. 61. № 9. P. 918–923. https://doi.org/10.1093/gerona/61.9.918
  81. Altmann A., Tian L., Henderson V.W. et al. Sex mo- difies the APOE-related risk of developing Alzheimer disease // Ann. Neurol. 2014. V. 75. № 4. P. 563–573. https://doi.org/10.1002/ana.24135
  82. Corder E.H., Ghebremedhin E., Taylor M.G. et al. The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: Modification by age, sex, and APOE polymorphism // Ann. N. Y. Acad. Sci. 2004. V. 1019. P. 24–28. https://doi.org/10.1196/annals.1297.005
  83. Ishioka Y.L., Gondo Y., Fuku N. et al. Effects of the APOE ε4 allele and education on cognitive function in Japanese centenarians // Age (Dordr.). 2016. V. 38. № 5–6. P. 495–503. https://doi.org/10.1007/s11357-016-9944-8
  84. Mi X., Eskridge K.M., George V., Wang D. Structural equation modeling of gene-environment interactions in coronary heart disease // Ann. Hum. Genet. 2011. V. 75. № 2. P. 255–265. https://doi.org/ 10.1111/j.1469-1809.2010.00634.x
  85. Roberts R., Stewart A.F.R. Genes and coronary artery disease: where are we? // J. Am. Coll. Cardiol. 2012. V. 60. № 18. P. 1715–1721. https://doi.org/10.1016/j.jacc.2011.12.062
  86. Qiu C., Winblad B., Marengoni A. et al. Heart failure and risk of dementia and Alzheimer disease: A population-based cohort study // Arch. Intern. Med. 2006. V. 166. № 9. P. 1003–1008. https://doi.org/10.1001/archinte.166.9.1003
  87. Hofman A., Ott A., Breteler M.M. et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam study // Lancet. 1997. V. 349. № 9046. P. 151–154. https://doi.org/10.1016/S0140-6736(96)09328-2
  88. Newman A.B., Fitzpatrick A.L., Lopez O. et al. Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the cardiovascular health study cohort // J. Am. Geriatr. Soc. 2005. V. 53. № 7. P. 1101–1107. https://doi.org/10.1111/j.1532-5415.2005.53360.x
  89. Grace C., Clarke R., Goel A. et al. Lack of genetic support for shared aetiology of coronary artery disease and late-onset Alzheimer’s disease // Sci. Rep. 2018. V. 8. № 1. P. 7102. https://doi.org/10.1038/s41598-018-25460-2
  90. Song Y., Stampfer M.J., Liu S. Meta-analysis: Apolipoprotein E genotypes and risk for coronary heart disease // Ann. Intern. Med. 2004. V. 141. № 2. P. 137–147. https://doi.org/10.7326/0003-4819-141-2-200407200-00013
  91. Xu M., Zhao J., Zhang Y. et al. Apolipoprotein E gene variants and risk of coronary heart disease: A meta-analysis // Biomed. Res. Int. 2016. V. 2016. https://doi.org/10.1155/2016/3912175
  92. Zhang Y., Tang H.-Q., Peng W.-J. et al. Meta-analysis for the association of apolipoprotein E ε2/ε3/ε4 polymorphism with coronary heart disease // Chin. Med. J. (Engl.). 2015. V. 128. № 10. P. 1391–1398. https://doi.org/10.4103/0366-6999.156803
  93. Zhang X., Liu B., Bai H. et al. Study on apolipoprotein E gene polymorphism in Chinese type 2 diabetes mellitus // Sichuan Da Xue Xue Bao Yi Xue Ban. 2003. V. 34. № 1. P. 75–77.
  94. Ferguson C.M., Hildebrand S., Godinho B.M.D.C. et al. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer’s disease // Alzheimers Dement. 2024. V. 20. № 4. P. 2632–2652. https://doi.org/10.1002/alz.13703

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».