Effect of RNA Interference-Induced Knockdown of the Actin Gene on Mortality of the German Cockroach, Blattella germanica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At present, the development of environmentally friendly bioinsecticides for the control of agricultural insect pests and synanthropic insect species is of particular relevance. One promising approach is to use double-stranded RNA complementary to a vital insect gene to knockdown that gene through an RNA interference mechanism, resulting in the death of the insect. Using Drosophila melanogaster as a model object, one gene, Actin 5C, was selected from six paralogous Drosophila actin genes based on the fact that knockdown of this gene in most Drosophila tissues results in insect death. A double-stranded RNA complementary to the Actin 5C gene of the German cockroach, Blattella germanica, was microinjected under the cuticle. RNA interference of this gene has been shown to kill cockroaches within few weeks. The prospects of using double-stranded RNA complementary to the Actin 5C gene as an insecticide are discussed.

About the authors

K. A. Kosherova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: dmitryVmukha@gmail.com
Moscow, 119991 Russia

N. V. Roshina

Vavilov Institute of General Genetics, Russian Academy of Sciences; National Research Centre “Kurchatov Institute”

Email: dmitryVmukha@gmail.com
Moscow, 119991 Russia; Moscow, 123182 Russia

A. V. Symonenko

National Research Centre “Kurchatov Institute”

Email: dmitryVmukha@gmail.com
Moscow, 123182 Russia

D. V. Mukha

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: dmitryVmukha@gmail.com
Moscow, 119991 Russia

References

  1. Tang Q., Vargo E.L., Ahmad I. et al. Solving the 250-year-old mystery of the origin and global spread of the German cockroach, Blattella germanica // Proc Natl. Acad. Sci. USA. 2024. V. 121 (22). https://doi.org/10.1073/pnas.2401185121
  2. Foil L.D., Gorham J.R. Mechanical transmission of disease agents by Arthropods Eldridge B.F., Ed- man J.D. // Medical Entomology / Eds Dordrecht: Springer 2000. https://doi.org/10.1007/978-94-011-6472-6_12
  3. Gore J.C., Schal C. Cockroach allergen biology and mitigation in the indoor environment // Annu. Rev. Entomol. 2007. V. 52. P. 439–463. https://doi.org/10.1146/annurev.ento.52.110405.091313
  4. Pomés A., Wunschmann S., Hindley J. et al. Cockroach allergens: Function, structure and allergenicity // Protein Peptide Lett. 2007. V. 14. P. 960–969. https://doi.org/10.2174/092986607782541178
  5. Pomés A., Melén E., Vailes L.D. et al. Novel allergen structures with tandem amino acid repeats derived from German and American cockroach // J. Biol. Chem. 1998. V. 273(46). https://doi.org/10.1074/jbc.273.46.30801
  6. Gore J.C., Schal C. Expression, production and excretion of Bla g 1 a major human allergen, in relation to food intake in the German cockroach, Blattella germa- nica // Med. Vet. Entomol. 2005. V. 19. P. 127–134. https://doi.org/10.1111/j.0269-283X.2005.00550.x
  7. Koo J., Palli S.R. Recent advances in understanding of the mechanisms of RNA interference in insects // Insect Mol. Biol. 2024. V. 3:10.1111/imb.12941. https://doi.org/10.1111/imb.12941
  8. He L., Huang Y., Tang X. RNAi-based pest control: Production, application and the fate of dsRNA // Front. Bioeng Biotechnol. 2022. V. 10. https://doi.org/10.3389/fbioe.2022.1080576
  9. Niu J., Chen R., Wang J.J. RNA interference in insects: the link between antiviral defense and pest control // Insect Sci. 2024. V. 1. P. 2–12. https://doi.org/10.1111/1744-7917.13208
  10. Dominguez R., Holmes K.C. Actin structure and func- tion // Ann. Rev. Biophysics. 2011. V. 40. P. 169–186. https://doi.org/10.1146/annurev-biophys-042910-155359
  11. Brand A.H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating do- minant phenotypes // Development. 1993. V. 118. № 2. P. 401–415. https://doi.org/10.1242/dev.118.2.401
  12. Wagner C.R., Mahowald A.P., Miller K.G. One of the two cytoplasmic actin isoforms in Drosophila is essential // Proc. Natl. Acad. Sci. USA. 2022. V. 99. № 12. P. 8037–8042. https://doi.org/10.1073/pnas.082235499
  13. Jadhav V., Vaishnaw A., Fitzgerald K. et al. RNA interference in the era of nucleic acid therapeutics // Nat. Biotechnol. 2024. V. 42. P. 394–405. https://doi.org/10.1038/s41587-023-02105-y
  14. Han H. RNA interference to knock down gene expres- sion // Methods Mol. Biol. 2018. V. 1706. P. 293–302. https://doi.org/10.1007/978-1-4939-7471-9_16
  15. Agrawal N., Dasaradhi P.V., Mohmmed A. et al. RNA interference: biology, mechanism, and applications // Microbiol. Mol. Biol. Rev. 2003. V. 67. № 4. P. 657–685. https://doi.org/10.1128/MMBR.67.4.657-685.2003
  16. Vallin J., Grantham J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: Implications for cancer cell biology // Cell Stress Chaperones. 2019. V. 24. № 1. P. 17–27. https://doi.org/10.1007/s12192-018-0949-3
  17. Brackley K.I., Grantham J. Interactions between the actin filament capping and severing protein gelsolin and the molecular chaperone CCT: Evidence for nonclassical substrate interactions // Cell Stress Chape- rones. 2011. V. 16. P. 173–179. https://doi.org/10.1007/s12192-010-0230-x
  18. Grantham J. The molecular chaperone CCT/TRiC: an essential component of proteostasis and a potential modulator of protein aggregation // Frontiers in Genetics. 2020. V. 11. P. 172. https://doi.org/10.3389/fgene.2020
  19. Myers A.J., Gondhalekar A.D., Fardisi M. et al. RNA interference and functional characterization of a tergal gland alpha amylase in the German cockroach, Blattella germanica L. // Insect Mol. Biol. 2018. V. 27. № 2. P. 143–153. https://doi.org/10.1111/imb.12353
  20. Suazo A., Gore C., Schal C. RNA interference-mediated knock-down of Bla g 1 in the German cockroach, Blattella germanica L., implicates this allergen-encoding gene in digestion and nutrient absorption // Insect Mol Biol. 2009. V. 18. № 6. P. 727–736. https://doi.org/10.1111/j.1365-2583.2009.00912.x
  21. Taning C.N.T., Christiaens O., Berkvens N. et al. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages // J. Pest. Sci. 2016. V. 89. P. 803–814. https://doi.org/10.1007/ s10340-016-0736-9
  22. Mitter N., Worrall E.A., Robinson K. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses // Nat. Plants. 2017. V. 3. https://doi.org/10.1038/nplants.2016.207
  23. Mysore K., Hapairai L.K., Sun L. et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality // Malar. J. 2017. V. 16. P. 461. https://doi.org/10.1186/s12936-017-2112-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).