Analysis of Associations Between Expression Patterns of miRNA miR-767, miR-335-3p and miR-106b-5p and Metabolites of Milk and Serum of Goats (Capra hircus)
- Authors: Pozovnikova M.V.1, Leibova V.B.1
-
Affiliations:
- Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the Ernst Federal Research Center for Animal Husbandry
- Issue: Vol 61, No 2 (2025)
- Pages: 75-92
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journals.rcsi.science/0016-6758/article/view/291703
- DOI: https://doi.org/10.31857/S0016675825020087
- EDN: https://elibrary.ru/uvgazs
- ID: 291703
Cite item
Abstract
The presented work characterised the expression profile of microRNAs miR-767, miR-335-3p and miR-106b-5p in milk and blood serum samples of goats from week 1 to week 23 of lactation, taking into account the dynamics of some protein and lipid metabolites of milk and blood. The expression of microRNAs in milk was associated with some changes in the analysed metabolites. MiR-767 was positively correlated with milk protein, casein, and fatty acids (C18:0, MCFA and MUFA). For miR-335-3p, it was negatively correlated with cholesterol and triglycerides of blood, but positively correlated with milk fat and MCFA, SCFA, TFA, and SFA including C14:0, C16:00 and C18:0. Expression of miR-106b-5p showed a unidirectional association with total blood cholesterol. Among all three serum microRNAs analysed, only miR-106b-5p expression was positively associated with milk protein, casein, LCFA and MUFA content. The high predictive effect (R2 > 0.800, p < 0.001) suggests a significant role of microRNAs synthesized by the mammary gland (miR-767 and miR-335-3p) for milk protein and fat components and miR-106b-5p circulating in the blood for milk protein and casein. The results of our study suggest that an increase in the expression level of miR-767, miR-335-3p in milk and miR-106b-5p in blood serum leads to activation of transcription and translation of their target genes, which is phenotypically expressed by an increase in the values of a range of protein and fat components of goat milk. The study of the role of miRNAs in the regulation of lactation is a promising area of modern molecular biology, which has great potential for increasing the efficiency of dairy production, improving product quality and in programs for the development of predictive biomarkers.
Keywords
About the authors
M. V. Pozovnikova
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the Ernst Federal Research Center for Animal Husbandry
Author for correspondence.
Email: pozovnikova@gmail.com
Russian Federation, Saint Petersburg, Tyarlevo, 196625
V. B. Leibova
Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the Ernst Federal Research Center for Animal Husbandry
Email: pozovnikova@gmail.com
Russian Federation, Saint Petersburg, Tyarlevo, 196625
References
- Assan N. Influence of stage of lactation on quantitative and qualitative milk production parameters in goats // Scientific J. Animal Sci. 2014. V. 3. № 12. Р. 291–300. https://doi.org/10.14196/sjas.v3i12.1775
- Osorio J.S., Lohakare J., Bionaz M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation // Physiol. Genomics. 2016. V. 48. № 4. 231–256. https://doi.org/10.1152/physiolgenomics.00016.2015
- Valencia-Magaña F., Prado-Rebolledo O., Hernández-Rivera J. et al. The goat udder: mechanism of milk secretion, and protein/fat synthesis // Abanico Veterinario. 2023. V. 13. https://doi.org/10.21929/abavet2023.10
- Zhang J., Deng L., Zhang X. et al. Multiple essential amino acids regulate mammary metabolism and milk protein synthesis in lactating dairy cows // Animal Feed Science and Technology. 2023 V. 296. https://doi.org/10.1016/j.anifeedsci.2022.115557
- Черепанов Г.Г., Макар З.Н. Сопряженная регуляция органного кровотока и метаболизма секреторных клеток молочной железы: анализ проблемы // Успехи физиол. наук. 2007. T. 38. № 1. С. 74–85.
- Michailidou S., Gelasakis A., Banos G. et al. Comparative transcriptome analysis of milk somatic cells during lactation between two intensively reared dairy sheep breeds // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.700489
- Xuan R., Wang J., Zhao X. et al. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution // Intern. J. Mol. Sciences. 2022. V. 23. № 22. https://doi.org/10.3390/ijms232214424
- Wang M., Ibeagha-Awemu E.M. Impacts of epigenetic processes on the health and productivity of livestock // Frontiers in Genet. 2021. V. 11. https://doi.org/10.3389/fgene.2020.613636
- Huntzinger E., Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay // Nat. Reviews Genet. 2011. V. 12. № 2. P. 99–110. https://doi.org/10.1038/nrg2936
- Rani P., Yenuganti V.R., Shandilya S. et al. miRNAs: The hidden bioactive component of milk // Trends in food science & technology. 2017. V. 65. P. 94–102. https://doi.org/10.1016/j.tifs.2017.05.007
- Quan S., Nan X., Wang K. et al. Different diets change the expression of bovine serum extracellular vesicle-miRNAs // Animals. 2019. V. 9. № 12. https://doi.org/10.3390/ani9121137
- Dysin A.P., Barkova O.Y., Pozovnikova M.V. The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep // Non-coding RNA. 2021. V. 7. № 4. https://doi.org/10.3390/ncrna7040078
- Xuan R., Chao T., Wang A. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages // PLoS One. 2020. V. 15. № 6. https://doi.org/10.1371/journal.pone.0234427
- Tudisco R., Morittu V.M., Addi L. et al. Influence of pasture on stearoyl-coa desaturase and mirna 103 expression in goat milk: Preliminary results // Animals. 2019. V. 9. № 9. https://doi.org/10.3390/ani9090606
- Wang Y., Lin Y., Wu S. et al. BioKA: A curated and integrated biomarker knowledgebase for animals // Nucl. Acids Res. 2024. V. 52. № D1. Р. D1121–D1130. https://doi.org/10.1093/nar/gkad873
- Mobuchon L., Marthey S., Boussaha M. et al. Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches // BMC Genomics. 2015. V. 16. P. 1–17. https://doi.org/10.1186/s12864-015-1471-y
- Varkonyi-Gasic E., Wu R., Wood M. et al. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs // Plant Methods. 2007. V. 3. № 1. P. 1–12. https://doi.org/10.1186/1746-4811-3-12
- Pozovnikova M.V., Leibova V.B., Tulinova O.V. et al. Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows // Animal Bioscience. 2024. V. 37. № 6. P. 965. https://doi.org/10.5713/ab.23.0427
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
- Zhao X., Song Y., Zhang Y. et al. Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows // Molecules. 2023. V. 28. № 2. https://doi.org/10.3390/molecules28020666
- Chang L., Xia J. MicroRNA regulatory network analysis using miRNet 2.0 // Methods in Mol. Biology. 2023. V. 2594. P. 185–204. https://doi.org/10.1007/978-1-0716-2815-7_14
- Huang H.Y., Lin Y.C.D., Cui S. et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions // Nucl. Acids Res. 2022. V. 50. № D1. P. D222–D230. https://doi.org/10.1093/nar/gkab1079
- Selionova M., Trukhachev V., Aibazov M. et al. Genome-wide association study of milk composition in Karachai goats // Animals. 2024. V. 14. № 2. https://doi.org/10.3390/ani14020327
- Akshit F.N., Mao T., Kaushik R. et al. Global comprehensive review and meta-analysis of goat milk composition by location, publication year and lactation stage // J. Food Composition and Analysis. 2024. V. 127. https://doi.org/10.1016/j.jfca.2024.105973
- Presti V.L., Tudisco R., Di Rosa A.R. et al. Influence of season on milk fatty acid profile and sensory characteristics of grazing goats in a Mediterranean environment: A sustainable agro-food system // Animal Production Sci. 2023. V. 63. № 7. P. 689–703. https://doi.org/10.1071/AN21538
- Kováčová M., Výrostková J., Dudriková E. et al. Assessment of quality and safety of farm level produced cheeses from sheep and goat milk // Applied Sciences. 2021. V. 11. № 7. https://doi.org/10.3390/app11073196
- Kljajevic N.V., Tomasevic I.B., Miloradovic Z.N. et al. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions // J. Food Science and Technology. 2018. V. 55. P. 299–303. https://doi.org/10.1007/s13197-017-2938-4
- Ibrahim N.S., Tajuddin F.H.A. Evaluation of milk production and milk composition at different stages of Saanen dairy goats // J. Agrobiotechnology. 2021. V. 12. № 1S. P. 204–211. https://doi.org/10.37231/jab.2021.12.1S.286
- Bernard L., Leroux C., Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland // Bioactive Components of Milk. 2008. P. 67–108. https://doi.org/10.1007/978-0-387-74087-4_2
- Batista C.P., Castro S.M., Correa H.J. et al. Relation between liver lipid content and plasma bio-chemical indicators in dairy cows // Acta Scientiae Veterinariae. 2020. № 48. P. 122–124. http://hdl.handle.net/10183/211802
- Лебедева И.Ю., Лейбова В.Б., Соломахин А.А. и др. Репродуктивный статус коров с разной молочной продуктивностью в связи с динамикой липидного обмена в послеотельный период // С.-хоз. биология. 2018. Т. 53. № 6. С. 1180–1189. https://doi.org/10.15389/agrobiology.2018.6.1180rus
- Antunovic Z., Speranda M., Novoselec J. et al. Blood metabolic profile and acid-base balance of dairy goats and their kids during lactation // Veterinarski Arhiv. 2017. V. 87. № 1. P. 43–55.
- Лейбова В.Б., Позовникова М.В. Изменчивость метаболических маркеров в крови у молочных коз с разной динамикой удоя в первой половине лактации // Аграрная наука. 2024. № 2. С. 44–47. https://doi.org/10.32634/0869-8155-2024-379-2-44-47
- Лейбова В.Б., Позовникова М.В. Вариативность биохимических показателей крови у коз зааненской породы в первые месяцы лактации // Пермский аграрный вестник. 2022. № 3 (39). С. 103–109. https://doi.org/10.47737/2307-2873_2022_39_102
- Modepalli V., Kumar A., Hinds L.A. et al. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii) // BMC Genomics. 2014. V. 15. P. 1–18. https://doi.org/10.1186/1471-2164-15-1012
- Lin X., Luo J., Zhang L. et al. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats // Gene Expression. 2013. V. 16. № 1. P. 1–13. https://doi.org/10.3727/105221613X13776146743262
- Ammah A.A., Do D.N., Bissonnette N. et al. Co-expression network analysis identifies miRNA–mRNA networks potentially regulating milk traits and blood metabolites // Intern. J. Mol. Sciences. 2018. V. 19. № 9. https://doi.org/10.3390/ijms19092500
- Xu E., Chen C., Fu J. et al. Dietary fatty acids in gut health: Absorption, metabolism and function // Animal Nutrition. 2021. V. 7. № 4. P. 1337–1344. https://doi.org/10.1016/j.aninu.2021.09.010
- Wang L., Xu F., Song Z. et al. A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice // Lipids in Health and Disease. 2020. V. 19. P. 1–13. https://doi.org/10.1186/s12944-020-01346-z
- Viturro E., Farke C., Meyer H.H.D. et al. Identification, sequence analysis and mRNA tissue distribution of the bovine sterol transporters ABCG5 and ABCG8 // J. Dairy Science. 2006. V. 89. № 2. P. 553–561. https://doi.org/10.3168/jds.S0022-0302(06)72118-X
- Gebreyesus G., Buitenhuis A.J., Poulsen N.A. et al. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition // BMC Genomics. 2019. V. 20. P. 1–16. https://doi.org/10.1186/s12864-019-5573-9
- Wang H., Shi H., Luo J. et al. MiR-145 regulates lipogenesis in goat mammary cells via targeting INSIG1 and epigenetic regulation of lipid‐related genes // J. Cell. Physiology. 2017. V. 232. № 5. P. 1030–1040. https://doi.org/10.1002/jcp.25499
- Zhu L., Jiao H., Gao W. et al. Fatty acid desaturation is suppressed in mir-26a/b knockout goat mammary epithelial cells by upregulating INSIG1 // Intern. J. Mol. Sciences. 2023. V. 24. № 12. https://doi.org/10.3390/ijms241210028
- Yart L., Finot L., Marnet P.G. et al. Suppression of ovarian secretions before puberty strongly affects mammogenesis in the goat // J. Dairy Research. 2012. V. 79. № 2. P. 157–167. https://doi.org/10.1017/S0022029912000106
- Chung N., Bogliotti Y.S., Ding W. et al. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos // Epigenetics. 2017. V. 12. № 12. P. 1048–1056. https://doi.org/10.1080/15592294.2017.1403693
- Wang J.J., Wang X., Xian Y.E. et al. The JMJD3 histone demethylase inhibitor GSK-J1 ameliorates lipopolysaccharide-induced inflammation in a mastitis model // J. Biol. Chemistry. 2022. V. 298. № 6. https://doi.org/10.1016/j.jbc.2022.102017
- Xu Q., Mei G., Sun D. et al. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle // BMC Genomics. 2012. V. 13. P. 1–10. https://doi.org/10.1186/1471-2164-13-590
- Liu Y., He Y., Jin A. et al. Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation // Proc. Natl Acad. Sci. USA. 2014. V. 111. № 23. P. E2414–E2422. https://doi.org/10.1073/pnas.1315605111
- Wei Y., Tian C., Zhao Y. et al. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism // Nat. Metabolism. 2020. V. 2. № 5. P. 447–460. https://doi.org/10.1038/s42255-020-0203-z
- Song J., Merrill R.A., Usachev A.Y. et al. The X-linked intellectual disability gene product and E3 ubiquitin ligase KLHL15 degrades doublecortin proteins to constrain neuronal dendritogenesis // J. Biol. Chemistry. 2021. V. 296. P. 100082. https://doi.org/10.1074/jbc.RA120.016210
- Bian F., Ma X., Villivalam S.D. et al. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes // Metabolism. 2018. V. 89. P. 39–47. https://doi.org/10.1016/j.metabol.2018.08.006
- Vilà-Brau A., De Sousa-Coelho A.L., Mayordomo C. et al. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line // J. Biol. Chemistry. 2011. V. 286. № 23. P. 20423–20430. https://doi.org/10.1074/jbc.M111.235044
- Cao H., Zhang S., Shan S. Ligand-dependent corepressor (LCoR) represses the transcription factor C/EBPβ during early adipocyte differentiation // J. Biol. Chemistry. 2017. V. 292. № 46. P. 18973–18987. https://doi.org/10.1074/jbc.M117.793984
- Kitagishi Y., Matsuda S. RUFY, Rab and Rap family proteins involved in a regulation of cell polarity and membrane trafficking // Intern. J. Mol. Sciences. 2013. V. 14. № 3. P. 6487–6498. https://doi.org/10.3390/ijms14036487
Supplementary files
