Comparative analysis of recombination events in common wheat lines produced with the involvement of different genome composition hexaploid Triticum species

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The species of the genus Triticum and synthetic wheat produced with their involvement are a source of new genes contributing to the improvement of cultivated T. aestivum varieties. In this work, the nature of substitutions and translocations in hybrid lines derived from the cross of common wheat varieties with Triticum spelta and T. kiharae was studied. It was shown that in the chromosomes of the B genome (especially in chromosomes 4B and 7B), spelt fragments had, as a rule, a greater length than the fragments of synthetic wheat T. kiharae. In the lines produced with the involvement of synthetic wheat, recombination events occurred more often between A and At genomes compared to the B and G genomes of T. aestivum and T. kiharae respectively, indicating a closer relationship between the homeologous A/At chromosomes. The data obtained indicate that the length of introgressed fragments in the D-genome of all the lines studied is, as a rule, less than in A and B genomes. With regard to the lines developed with the involvement of spelt, a high meiotic index was noted (95.83–97.27%), which is determined by the close relationship of T. spelta and T. aestivum. The lines based on synthetic wheat had fewer normal tetrads (77.093.0%), which is due not only to the reduced homology of chromosomes between the genomes of their original forms, but also the reduced cytological stability of T. kiharae compared to the rest of parent genotypes. There were no significant disturbances in the process of gamete formation in introgression lines, and the meiotic index for the vast majority of genotypes was high (more than 90%). The studied lines are of interest for the selection of promising material characterized by economically valuable characters.

全文:

受限制的访问

作者简介

О. Orlovskaya

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: O.Orlovskaya@igc.by
白俄罗斯, Minsk

S. Vakula

Belarusian State Technological University

Email: O.Orlovskaya@igc.by
白俄罗斯, Minsk

I. Leonova

Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: O.Orlovskaya@igc.by
俄罗斯联邦, Novosibirsk

参考

  1. Petersen G., Seberg O., Yde M., Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evi-dence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum) // Mol. Phylogenet. Evol. 2006. V. 39. P. 70–82. https://doi.org/10.1016/j.ympev.2006.01.023
  2. Zhang H., Mittal N., Leamy L.J. et al. Back into the wild − apply untapped genetic diversity of wild relatives for crop improvement // Evol. Appl. 2016. V. 10. P. 5–24. https://doi.org/10.1111/eva.12434
  3. Arzani A., Ashraf M. Cultivated ancient wheats (Triticum spp.): А potential source of health – beneficial food products // Comprehensive Rev. in Food Sci. and Food Safety. 2017. V. 16. № 3. P. 477–488. https://doi.org/10.1111/1541-4337.12262
  4. Uauy C., Distelfeld A., Fahima T. et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat // Science. 2006. V. 314. № 5803. P. 1298–1301. https://doi.org/10.1126/science.1133649
  5. Marais G.F., Pretorius Z.A., Wellings C.R. et al. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides // Euphytica. 2005. V. 143. P. 115–123. https://doi.org/10.1007/s10681-005-2911-6
  6. Maestra B., Naranjo T. Structural chromosome differentiation between Triticum timopheevii, T. turgidum and T. aestivum // Theor. Appl. Genet. 1999. V. 98. P. 744–750. https://doi.org/10.1007/s001220051130
  7. Friebe B., Qi L., Nasuda S. et al. Development of a complete set of Triticum aestivum – Aegilops speltoides chromosome addition lines // Theor. Appl. Genet. 2000. V. 101. P. 51–58. https://doi.org/10.1007/s001220051448
  8. Леонова И.Н., Будашкина Е.Б. Изучение признаков продуктивности у интрогрессивных линий Triticum aestivum / Triticum timopheevii, устойчивых к грибным болезням // Вавил. журн. генетики и селекции. 2016. Т. 20. № 3. С. 311–319. https://doi.org/10.18699/VJ16.120
  9. Abdel-Aal E.S.M., Hucl P. Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products // J. Food Compos. Anal. 2002. V. 15. P. 737–747. https://doi.org/10.1006/jfca.2002.1094
  10. Zielinski H., Ceglińska A., Michalska A. Bioactive compounds in spelt bread // Euroр. Food Res. Technol. 2008. V. 226. P. 537–544. https://doi.org/10.1007/s00217-007-0568-1
  11. Wiwart M., Suchowilska E., Lajszner W., Graban Ł. Identification of hybrids of spelt and wheat and their parental forms using shape and color descriptors // Comp. Electron. Agric. 2012. V. 83. P. 68–76. https://doi.org/10.1016/j.compag.2012.01.015
  12. Diordiieva I., Riabovol L., Riabovol I. et al. The characteristic of wheat collection created by Triticum aestivum L. / Triticum spelta L. hybridization // Agronomy Res. 2018. V. 16. P. 2005–2015. https://doi.org/10.15159/AR.18.181
  13. Jafarzadeh J., Bonnett D., Jannink J.L. et al. Breeding value of primary synthetic wheat genotypes for grain yield // PLoS One. 2016. V. 11. № 9. P. 62–86. https://doi.org/10.1371/journal.pone.0162860
  14. Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A. et al. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement // Plant Breed. Rev. 2013. V. 37. P. 35–122. https://doi.org/10.1002/9781118497869.ch2
  15. Yang W., Liu D., Li J. et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China // J. Genet. Genomics. 2009. V. 36. № 9. P. 539 –546. https://doi.org/10.1016/S1673-8527(08)60145-9
  16. Li A., Liu D., Yang W. et al. Synthetic hexaploid wheat: Yesterday, today, and tomorrow // Engineering. 2018. V. 4. P. 552–558. https://doi.org/10.1016/j.eng.2018.07.001
  17. Liang D., Zhang M., Liu X. et al. Development and identification of four new synthetic hexaploid wheat lines with solid stems // Sci. Rep. 2022. V. 12. Р. 4898. https://doi.org/10.1038/s41598-022-08866-x
  18. Lazar M.D., Worrall W.D., Peterson G.L. et al. Registration of ‘TAM 110’ wheat // Crop Science. 2004. V. 44. № 1. P. 355–357. https://doi.org/10.2135/cropsci1997.0011183X003700060055x
  19. Rudd J.C., Devkota R.N., Baker J.A. et al. ‘TAM 112’ wheat, resistant to green bug and wheat curl mite and adapted to the dryland production system in the southern high plains // J. Plant Registrations. 2014. V. 8. № 3. P. 291–297. https://doi.org/10.3198/jpr2014.03.0016crc
  20. Дорофеев В.Ф., Филатенко А.А., Мигушова Э.Ф. и др. Культурная флора СССР. Л., 1979. 347 с.
  21. Brown-Guedira G.L., Singh S., Fritz A.K. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subs. parmeniacum // Phytopathology. 2003. V. 93. P. 784–789. https://doi.org/10.1094/PHYTO.2003.93.7.784
  22. Uhrin A., Szakács E., Láng L. et al. Molecular cytogenetic characterization and SSR marker analysis of a leaf rust resistant wheat line carrying a 6G(6B) substitution from Triticum timopheevii (Zhuk.) // Euphytica. 2012. V. 186. P. 45–55. https://doi.org/10.1007/s10681-011-0483-1
  23. Cao W., Fedak G., Armstrong K. et al. Registration of spring wheat germplasm TC 67 resistant to Fusarium head blight // J. Plant Regist. 2009. V. 3. P. 104–106. https://doi.org/10.3198/jpr2008.08.0465crg
  24. Järve K., Peusha H.O., Tsymbalova J. et al. Chromosomal location of a T. timopheevii-derived powdery mildew resistance gene transferred to common wheat // Genome. 2000. V. 43. P. 377–381. https://doi.org/10.1139/g99-141
  25. Peusha H., Enno T., Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri // Hereditas. 2000. V. 132. P. 29–34. https://doi.org/10.1111/j.1601-5223.2000.00029.x
  26. Юдина Р.С., Леонова И.Н., Салина Е.А., Хлесткина Е.К. Изменение солеустойчивости мягкой пшеницы в результате интрогрессии генетического материала Aegilops speltoides и Triticum timopheevii // Вавил. журн. генетики и селекции. 2015. Т. 19. № 2. С. 171–175.
  27. Обухова Л.В., Будашкина Е.Б., Ермакова М.Ф. и др. Качество зерна и муки у интрогрессивных линий яровой мягкой пшеницы с генами устойчивости к листовой ржавчине от Triticum timopheevii Zhuk. // С.-хоз. биология. 2008. № 5. С. 38–42.
  28. Naz A.A., Dadshani S., Ballvora A. et al. Genetic analysis and transfer of favorable exotic QTL alleles for grain yield across D genome using two advanced backcross wheat populations // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.00711
  29. Rawat N., Schoen A., Singh L. et al. TILL-D: An Aegilops tauschii TILLING resource for wheat improvement // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.01665
  30. Suneja Y., Gupta A.K., Bains N.S. Stress adaptive plasticity: Aegilops tauschii and Triticum dicoccoides as potential donors of drought associated morpho-physiological traits in wheat // Front. Plant Sci. 2019. V. 10. https://doi.org/10.2289/fpls.2019.00211
  31. Бадаева Е.Д., Будашкина Е.Б., Билинская Е.Н., Пухальский В.А. Закономерности межгеномных замещений хромосом у межвидовых гибридов пшеницы и их использование для создания генетической номенклатуры хромосом Triticum timopheevii // Генетика. 2010. Т. 46. № 7. С. 869–886. https://doi.org/10.1134/S102279541007001X
  32. Pestsova E., Ganal M.W., Röder M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat // Genome. 2000. V. 43. № 4. P. 689–697. https://doi.org/10.1139/gen-43-4-689
  33. Wang S., Wong D., Forrest K. et al. Characterization of polyploid wheat genomic diversity using a high-density90000 single nucleotide polymorphism array // Plant Biotechnol. J. 2014. V. 12. № 6. P. 787–796. https://doi.org/10.1111/pbi.12183
  34. Winfield M.O., Allen A.M., Burridge A.J. et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool // Plant Biotechnol J. 2016. V. 14. № 5. P. 1195–1206. https://doi.org/10.1111/pbi.12485
  35. Orlovskaya О.A., Leonova I.N., Solovey L.A., Dubovets N.I. Molecular cytological analysis of alien introgressions in common wheat lines created by crossing of Triticum aestivum with T. dicoccoides and T. dicoccum // Vavilov J. Genet. Breed. 2023. V. 27. № 6. P. 553–564. https://doi.org/10.18699/VJGB-23-67
  36. Skolotneva E.S., Leonova I.N., Bukatich E.Yu., Salina E.A. Methodical approaches to identification of effective wheat genes providing broad-spectrum resistance against fungal diseases // Vavilov J. Genet. Breed. 2017. V. 21. № 7. P. 862–869. https://doi.org/10.18699/VJ17.307
  37. Паушева З.П. Практикум по цитологии растений. М.: Колос, 1988. 280 с.
  38. Orlovskaya О., Dubovets N., Solovey L., Leonova I. Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of Triticum aestivum with T. kiharae // BMC Plant Biol. 2020. V. 20. Suppl. 1. Р. 201. https://doi.org/10.1186/s12870-020-02407-2
  39. Luo M.-C., Gu Y.Q., Puiu D. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii // Nature. 2017. V. 551. P. 498–502. https://doi.org/10.1038/nature24486
  40. Riaz A., Hathorn A., Dinglasan E. et al. Into the vault of the Vavilov wheats: Оld diversity for new alleles // Genet. Resour. Crop Evol. 2016. V. 64. № 3. P. 531–544. https://doi.org/10.1007/s10722-016-0380-5
  41. Grewal S., Hubbart-Edwards S., Yang C. et al. Detection of Triticum urartu introgressions in wheat and development of a panel of interspecific introgression lines // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.01565
  42. King J., Grewal S., Yang C. et al. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes // Ann. Bot. 2018. V. 121. P. 229–240. https://doi.org/10.1093/aob/mcx149
  43. Бадаева Е.Д. Эволюция геномов пшениц и их дикорастущих сородичей: молекулярно-цитогенетическое исследование: Автореф. дис. ... д-ра биол. наук. М.: Ин-т мол. биологии, 2000. 48 с.
  44. Ruban A.S., Badaeva E.D. Evolution of the S-Genomes in Triticum-Aegilops аlliance: Evidences from chromosome analysis // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.01756
  45. Бадаева Е.Д., Прокофьева З.Д., Билинская Е.Н. и др. Цитогенетический анализ устойчивых к бурой ржавчине и мучнистой росе гибридов, полученных от скрещивания мягкой пшеницы (Triticum aestivum L., AABBDD) c пшеницами группы Timopheevi (AtAtGG) // Генетика. 2000. Т. 36. № 12. С. 1663–1673. https://doi.org/10.1023/A:1009019323942
  46. Гордеева Е.И., Леонова И.Н., Калинина Н.П. и др. Сравнительный цитологический и молекулярный анализ интрогрессивных линий мягкой пшеницы, содержащих генетический материал Triticum timopheevii Zhuk. // Генетика. 2009. Т. 45. № 12. С. 1616–1626. https://doi.org/10.1134/S1022795409120047
  47. Feldman M. Identification of unpaired chromosomes in F1 hybrids involving T. aestivum and T. timopheevii // Can. J. Genet. Cytol. 1966. V. 8. P. 144–151.
  48. Devi U., Grewal S., Yang C. et al. Development and characterisation of interspecific hybrid lines with genome-wide introgressions from in a hexaploid wheat background // BMC Plant Biol. 2019. V. 19. Р. 183. https://doi.org/10.1186/s12870-019-1785-z
  49. Rodríguez S., Perera E., Maestra B. et al. Chromosome structure of Triticum timopheevii relative to T. turgidum // Genome. 2000. V. 43. P. 923–930. https://doi.org/10.1139/g00-062
  50. Jiang J., Gill B.S. Different species-specific chromosome translocations in T. timopheevii and T. turgidum support the diphyletic origin of polyploidy wheats // Chromosom Res. 1994. V. 2. P. 59–64. https://doi.org/10.1007/BF01539455
  51. Nyine M., Adhikari E., Clinesmith M.I. et al. Genomic patterns of introgression in interspecific populations created by crossing wheat with its wild relative // G3: Genes, Genomes, Genetics. 2020. V. 10. P. 3651–3661. https://doi.org/10.1534/g3.120.401479
  52. Дедкова О.С., Бадаева Е.Д., Митрофанова О.П. и др. Анализ внутривидовой дивергенции гексаплоидной пшеницы Triticum spelta L. с помощью метода дифференциального окрашивания хромосом // Генетика. 2004. Т. 40. № 10. С. 1352–1369. https://doi.org/10.1023/B:RUGE. 0000044755. 18085.7e
  53. Rezaei M., Arzani A., Sayed-Tabatabaei B.E. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress // J. Genet. 2010. V. 89:401. https://doi.org/10.1007/s12041-010-0058-2
  54. Лапочкина И.Ф., Иорданская И.В., Ячевская Г.Л., Адхамаль Лаббан Д. Цитогенетическое изучение коллекции синтетической пшеницы из Национальной коллекции злаков США (National small grain collection of USDA-ARS) в условиях Нечерноземной зоны России // С.-хоз. биология. 2014. № 3. С. 77–82.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Number (%) of polymorphic markers revealing the localization and extent of introgression fragments from T. kiharae and T. spelta in hybrid forms of wheat in the chromosomes of genomes A (a), B (b) and D (c).

下载 (211KB)
3. Fig. 2. Average number of different chromosomal associations in metaphase I of meiosis in introgressive lines of soft wheat F10 and their parental forms.

下载 (211KB)
4. Fig. 3. Meiotic index (%) in introgressive lines of soft wheat F10 and their parental forms.

下载 (154KB)
5. Supplementary
下载 (539KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».