Relationship of microRNAs with transposons in osteoarthritis development
- 作者: Mustafin R.N.1, Khusnutdinova Е.К.2
-
隶属关系:
- Bashkir State Medical University
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences
- 期: 卷 61, 编号 1 (2025)
- 页面: 24-37
- 栏目: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/285506
- DOI: https://doi.org/10.31857/S0016675825010023
- EDN: https://elibrary.ru/VFLMDB
- ID: 285506
如何引用文章
详细
Conducted GWAS identified the association of osteoarthritis with more than 100 different SNPs, most of which are located in intronic and intergenic regions where genes encoding transposable elements and non-coding RNAs derived from them are located. A number of studies have also determined the activation of retroelements in joint tissues and in peripheral blood of patients with osteoarthritis. An assumption has been made that activated transposons, which cause aging and associated inflammation, influence the etiopathogenesis of osteoarthritis. To confirm this hypothesis, a search was conducted for data on changes in the expression of specific microRNAs derived from transposons during aging and osteoarthritis. As a result, 23 such microRNAs were found, the participation of which in the development of the disease is associated with an impact on genes and signaling pathways regulating cell proliferation and apoptosis, inflammatory and metabolic processes, and mechanisms of cartilage degradation. Changes in expression of these microRNAs indicate that the epigenetic mechanisms of aging are involved in osteoarthritis etiopathogenesis due to pathological activation of transposable elements complementary to the sequences of non-coding RNAs derived from them in evolution.
全文:

作者简介
R. Mustafin
Bashkir State Medical University
编辑信件的主要联系方式.
Email: ruji79@mail.ru
俄罗斯联邦, Ufa
Е. Khusnutdinova
Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences
Email: ruji79@mail.ru
俄罗斯联邦, Ufa
参考
- GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021 // Lancet Rheumatol. 2023. V. 5. e508–e522. https://doi.org/10.1016/S2665-9913(23)00163-7
- Boer C.G., Hatzikotoulas K., Southam L. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations // Cell. 2021. V. 184. P. 4784–4818.e17. https://doi.org/10.1016/j.cell.2021.07.038
- Faber B.G., Frysz M., Boer C.G. et al. The identification of distinct protective and susceptibility mechanisms for hip osteoarthritis: Findings from a genome-wide association study meta-analysis of minimum joint space width and Mendelian randomisation cluster analyses // EBioMedicine. 2023. V. 95. https://doi.org/10.1016/j.ebiom.2023.104759
- Chen X., Wu Q., Cao X. et al. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis // Int. Immunopharmacol. 2022. V. 112. https://doi.org/10.1016/j.intimp.2022.109228
- Jiang Y., Shen Y., Ding L. et al. Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis // BMC Musculoskelet. Disord. 2021. V. 22. P. 1008. https://doi.org/10.1186/s12891-021-04894-2
- Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis // Osteoarthritis Cartilage. 2022. V. 30. P. 184–195. https://doi.org/10.1016/j.joca.2021.04.020
- Vos T., Flaxman A.D., Naghavi M. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010 // Lancet. 2012. V. 380. P. 2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2
- De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. P. 73–78.
- Gorbunova V., Seluanov A., Mita P. et al. The role of retrotransposable elements in ageing and age-associated diseases // Nature. 2021. V. 596. P. 43–53. https://doi.org/10.1038/s41586-021-03542-y
- Bendiksen S., Martinez-Zubiavrra I., Tümmler C. et al. Human endogenous retrovirus W activity in cartilage of osteoarthritis patients // Biomed. Res. Int. 2014. V. 2014. https://doi.org/10.1155/2014/698609
- Teerawattanapong N., Udomsinprasert W., Ngarmukos S. et al. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis // Heliyon. 2019. V. 5. https://doi.org/10.1016/j.heliyon.2019.e01774
- Lee D.H., Bae W.H., Ha H. et al. The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p // Sci. Rep. 2024. V. 14. P. 4723. https://doi.org/10.1038/s41598-024-55332-x
- Conley A.B., Jordan I.K. Cell type-specific termination of transcription by transposable element sequences // Mob. DNA. 2012. V. 3. P. 15. https://doi.org/10.1186/1759-8753-3-15
- Daniel C., Behm M., Öhman M. The role of Alu elements in the cis-regulation of RNA processing // Cell. Mol. Life Sci. 2015. V. 72. P. 4063–4076. https://doi.org/10.1007/s00018-015-1990-3
- Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160. https://doi.org/10.1109/TCBB.2015.2511767
- Chen J., Chen S., Cai D. et al. The role of Sirt6 in osteoarthritis and its effect on macrophage polarization // Bioengineered. 2022. V. 13. P. 9677–9689. https://doi.org/10.1080/21655979.2022.2059610
- Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. P. 5011. https://doi.org/10.1038/ncomms6011
- Zhou F., Mei J., Han X. et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κ B/MAPK signaling and protecting chondrocytes // Acta. Pharm. Sin. B. 2019. V. 9. P. 973–985. https://doi.org/10.1016/j.apsb.2019.01.015
- Saetan N., Honsawek S., Tanavalee S. et al. Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis // Clin. Biochem. 2011. V. 44. P. 1218–1222. https://doi.org/10.1016/j.clinbiochem.2011.07.010
- Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. V. 21. P. 742–749.
- Lu F., Liu P., Zhang Q. et al. Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: A meta-analysis based on case-control studies // J. Orthop. Surg. Res. 2019. V. 14. P. 445. https://doi.org/10.1186/s13018-019-1495-0
- Budhiparama N.C., Lumban-Gaol I., Sudoyo H. Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review // J. Orthop. Surg. (Hong Kong). 2022. V. 30. https://doi.org/10.1177/23094990221076652
- Deng X., Ye K., Tang J., Huang Y. Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: Evidence from a meta-analysis // Nucleosides Nucleotides Nucleic Acids. 2023. V. 42. P. 328–342. https://doi.org/10.1080/15257770.2022.2147541
- Rodriguez-Fontenla C., Calaza M., Evangelou E. et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies // Arthritis Rheumatol. 2014. V. 66. P. 940–949. https://doi.org/10.1002/art.38300
- Liu Y., Lu T., Liu Z. et al. Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.936606
- Yang L., Chen Z., Guo H. et al. Extensive cytokine analysis in synovial fluid of osteoarthritis patients // Cytokine. 2021. V. 143. https://doi.org/10.1016/j.cyto.2021.155546
- Pan L., Yang F., Cao X. et al. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis // Front. Endocrinol (Lausanne). 2023. V. 14. https://doi.org/10.3389/fendo.2023.1144258
- Xu J., Chen K., Yu Y. et al. Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning // J. Pers. Med. 2023. V. 13. P. 367. https://doi.org/10.3390/jpm13020367
- Cheng P., Gong S., Guo C. et al. Exploration of effective biomarkers and infiltrating Immune cells in Osteoarthritis based on bioinformatics analysis // Artif. Cells. Nanomed. Biotechnol. 2023. V. 51. P. 242–254. https://doi.org/10.1080/21691401.2023.2185627
- Li J., Wang G., Xv X. et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1134412
- Grandi F.C., Bhutani N. Epigenetic therapies for osteoarthritis // Trends. Pharmacol. Sci. 2020. V. 41. P. 557–569. https://doi.org/10.1016/j.tips.2020.05.008
- Knights A.J., Redding S.J., Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges // Curr. Opin. Rheumatol. 2023. V. 35. P. 128–134.
- Zhang J., Zhang S., Zhou Y. et al. KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration // J. Orthop. Surg. Res. 2022. V. 17. P. 365. https://doi.org/10.1186/s13018-022-03247-6
- Zhang Q., Sun C., Liu X. et al. Mechanism of immune infiltration in synovial tissue of osteoarthritis: A gene expression-based study // J. Orthop. Surg. Res. 2023. V. 18. P. 58. https://doi.org/10.1186/s13018-023-03541-x
- Xia D., Wang J., Yang S. et al. Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies // Medicine (Baltimore). 2023. V. 102. https://doi.org/10.1097/MD.0000000000035355
- Xu L., Wang Z., Wang G. Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies // Int. J. Gen. Med. 2024. V. 17. P. 205–224. https://doi.org/10.2147/IJGM.S447035
- Cornec A., Poirier E.Z. Interplay between RNA interference and transposable elements in mammals // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1212086
- Cho J., Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge // eLife. 2017. V. 6. https://doi.org/10.7554/eLife.30038
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/https://doi.org/ 10.1038/nsmb.2799
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134. https://doi.org/https://doi.org/ 10.1016/j.devcel.2018.06.022
- Playfoot C.J., Sheppard S., Planet E., Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development // RNA. 2022. V. 28. P. 1157–1171. https://doi.org/10.1261/rna.079100.122
- McCue A.D., Nuthikattu S., Slotkin R.K. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs // RNA Biol. 2013. V. 10. P. 1379–1395. https://doi.org/10.4161/rna.25555
- Lee D.H., Bae W.H., Ha H. et al. Z-DNA-containing long terminal repeats of human endogenous retrovirus families provide alternative promoters for human functional genes // Mol. Cells. 2022. V. 45. P. 522–530. https://doi.org/10.14348/molcells.2022.0060
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as a effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V. 10. P. 645. https://doi.org/10.3389/fgene.2019.00645
- Tristán-Ramos P., Rubio-Roldan A., Peris G. et al. The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition // Nat. Commun. 2020. V. 11. P. 5712. https://doi.org/10.1038/s41467-020-19430-4
- Peng S., Yan Y., Li R. et al. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway // Ann. N. Y. Acad. Sci. 2021. V. 1503. P. 48–59. https://doi.org/10.1111/nyas.14590
- Dhahbi J.M., Atamna H., Boffelli D. et al. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence // PLoS One. 2011. V. 6. https://doi.org/10.1371/journal.pone.0020509
- Lu M.Y., Yang Y.H., Wu X. et al. Effect of needle-knife on chondrocyte apoptosis of knee joint in rabbits with knee osteoarthritis based on CircSERPINE2-miR-1271-5P-ERG axis // Zhongguo Zhen Jiu. 2023. V. 43. P. 447–453. https://doi.org/10.13703/j.0255-2930.20220411-k0001
- Xie W.P., Ma T., Liang Y.C. et al. Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis // Zhongguo Zhong Yao Za Zhi. 2023. V. 48. P. 4843–4851. https://doi.org/10.19540/j.cnki.cjcmm.20230510.708
- Ju C., Liu R., Zhang Y. et al. Exosomes may be the potential new direction of research in osteoarthritis management // Biomed. Res. Int. 2019. V. 3. https://doi.org/10.1155/2019/7695768
- Qin W.J., Wang W.P., Wang X.B. et al. MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 10332–10342. https://doi.org/10.26355/eurrev_201912_19671
- Noren Hooten N., Fitzpatrick M., Wood W.H 3rd et al. Age-related changes in microRNA levels in serum // Aging (Albany NY). 2013. V. 5. P. 725–740. https://doi.org/10.18632/aging.100603
- Xie Y., Zhang Y., Liu X. et al. miR-151-5p promotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT // Oncol. Rep. 2023. V. 49. P. 50. https://doi.org/10.3892/or.2023.8487
- Wang Y., Yu C., Zhang H. Lipopolysaccharides-mediated injury to chondrogenic ATDC5 cells can be relieved by Sinomenine via downregulating microRNA-192 // Phytother. Res. 2019. V. 33. P. 1827–1836. https://doi.org/10.1002/ptr.6372
- Sataranatarajan K., Feliers D., Mariappan M.M. et al. Molecular events in matrix protein metabolism in the aging kidney // Aging Cell. 2012. V. 11. P. 1065–1073. https://doi.org/10.1111/acel.12008
- Smith-Vikos T., Liu Z., Parsons C. A serum miRNA profile of human longevity: Findings from the Baltimore Longitudinal Study of Aging (BLSA) // Aging (Albany NY). 2016. V. 8. P. 2971–2987. https://doi.org/10.18632/aging.101106
- Liu H., Luo J. miR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis // J. Biochem. 2019. V. 166. P. 495–502. https://doi.org/10.1093/jb/mvz065
- Liu Y., Zhang Y. Hsa_circ_0134111 promotes osteoarthritis progression by regulating miR-224-5p/CCL1 interaction // Aging (Albany NY). 2021. V. 13. P. 20383–20394. https://doi.org/10.18632/aging.203420
- Chen H., Chen F., Hu F. et al. MicroRNA-224-5p nanoparticles balance homeostasis via inhibiting cartilage degeneration and synovial inflammation for synergistic alleviation of osteoarthritis // Acta Biomater. 2023. V. 167. P. 401–415. https://doi.org/10.1016/j.actbio.2023.06.010
- Francisco S., Martinho V., Ferreira M. et al. The role of microRNAs in proteostasis decline and protein aggregation during brain and skeletal muscle aging // Int. J. Mol. Sci. 2022. V. 23. P. 3232. https://doi.org/10.3390/ijms23063232
- Beyer C., Zampetaki A., Lin N.Y. et al. Signature of circulating microRNAs in osteoarthritis // Ann. Rheum. Dis. 2015. V. 74. e18. https://doi.org/10.1136/annrheumdis-2013-204698
- Morsiani C., Bacalini M.G., Collura S. et al. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down syndrome // Mech. Ageing Dev. 2022. V. 206. https://doi.org/10.1016/j.mad.2022.111691
- Zhou S.L., Hu Z.Q., Zhou Z.J. et al. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis // Hepatology. 2016. V. 63. P. 1560–1575. https://doi.org/10.1002/hep.28445
- Costa V., De Fine M., Carina V. et al. How miR-31-5p and miR-33a-5p regulates SP1/CX43 expression in osteoarthritis disease: preliminary insights // Int. J. Mol. Sci. 2021. V. 22. P. 2471. https://doi.org/10.3390/ijms22052471
- Dellago H., Preschitz-Kammerhofer B., Terlecki-Zaniewicz L. et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan // Aging Cell. 2013. V. 12. P. 446–458. https://doi.org/10.1111/acel.12069
- Ali S.A., Espin-Garcia O., Wong A.K. et al. Circulating microRNAs differentiate fast-progressing from slow-progressing and non-progressing knee osteoarthritis in the Osteoarthritis Initiative cohort // Ther. Adv. Musculoskelet. Dis. 2022. V. 14. https://doi.org/10.1177/1759720X221082917
- Dalmasso B., Hatse S., Brouwers B. et al. Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy // BMC Cancer. 2018. V. 18. P. 1014. https://doi.org/10.1186/s12885-018-4920-6
- Lin Z., Ma Y., Zhu X. et al. Potential predictive and therapeutic applications of small extracellular vesicles-derived circPARD3B in osteoarthritis // Front. Pharmacol. 2022. V. 13. https://doi.org/10.3389/fphar.2022.968776
- Paradowska-Gorycka A., Wajda A., Rzeszotarska E. et al. miR-10 and Its negative correlation with serum IL-35 concentration and positive correlation with STAT5a expression in patients with rheumatoid arthritis // Int. J. Mol. Sci. 2022. V. 23. P. 7925. https://doi.org/10.3390/ijms23147925
- Yang X., Tan J., Shen J. et al. Endothelial cell-derived extracellular vesicles target TLR4 via miRNA-326-3p to regulate skin fibroblasts senescence // J. Immunol. Res. 2022. V. 2022. P. 3371982. https://doi.org/10.1155/2022/3371982
- Wilson T.G., Baghel M., Kaur N. et al. Characterization of miR-335-5p and miR-335-3p in human osteoarthritic tissues // Arthritis Res. Ther. 2023. V. 25. P. 105. https://doi.org/10.1186/s13075-023-03088-6
- Xia S., Zhao J., Zhang D. et al. MiR-335-5p inhibits endochondral ossification by directly targeting SP1 in TMJ OA // Oral Dis. 2023. V. 20. https://doi.org/10.1111/odi.14736
- Raihan O., Brishti A., Molla M.R. et al. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain // Neuroscience. 2018. V. 390. P. 160–173. https://doi.org/10.1016/j.neuroscience.2018.08.003
- Duan Y., Yu C., Yan M. et al. m6A regulator-mediated RNA methylation modification patterns regulate the immune microenvironment in osteoarthritis // Front. Genet. 2022. V. 13. https://doi.org/fgene.2022.921256
- Zhang H., Yang H., Zhang C. et al. Investigation of microRNA expression in human serum during the aging process // J. Gerontol. A. Biol. Sci. Med. Sci. 2015. V. 70. P. 102–109. https://doi.org/10.1093/gerona/glu145
- ElSharawy A., Keller A., Flachsbart F. et al. Genome-wide miRNA signatures of human longevity // Aging Cell. 2012. V. 11. P. 607–616. https://doi.org/10.1111/j.1474-9726.2012.00824.x
- Shi F.L., Ren L.X. Up-regulated miR-374a-3p relieves lipopolysaccharides induced injury in CHON-001 cells via regulating Wingless-type MMTV integration site family member 5B // Mol. Cell. Probes. 2020. V. 51. https://doi.org/10.1016/j.mcp.2020.101541
- Feng L., Yang Z., Li Y. et al. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis // Mol. Ther. Nucleic Acids. 2022. V. 28. P. 328–341. https://doi.org/10.1016/j.omtn.2022.03.016
- Guo D., Ye Y., Qi J. et al. Age and sex differences in microRNAs expression during the process of thymus aging // Acta Biochim. Biophys. Sin. (Shanghai). 2017. V. 49. P. 409–419. https://doi.org/10.1093/abbs/gmx029
- Zhang W., Cheng P., Hu W. et al. Inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9 // Cancer Gene Ther. 2018. V. 25. P. 326–338. https://doi.org/10.1038/s41417-018-0029-y
- Li X., Wu J., Zhang K. et al. MiR-384-5p targets Gli2 and negatively regulates age-related osteogenic differentiation of rat bone marrow mesenchymal stem cells // Stem. Cells Dev. 2019. V. 28. P. 791–798. https://doi.org/10.1089/scd.2019.0044
- Zhang H., Xiang X., Zhou B. et al. Circular RNA SLTM as a miR-421-competing endogenous RNA to mediate HMGB2 expression stimulates apoptosis and inflammation in arthritic chondrocytes // J. Biochem. Mol. Toxicol. 2023. V. 37. https://doi.org/10.1002/jbt.23306
- Li G., Song H., Chen L. et al. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract // Exp. Cell. Res. 2017. V. 356. P. 20–27. https://doi.org/10.1016/j.yexcr.2017.04.002
- Chen Y.J., Chang W.A., Wu L.Y. et al. Identification of novel genes in osteoarthritic fibroblast-like synoviocytes using next-generation sequencing and bioinformatics approaches // Int. J. Med. Sci. 2019. V. 16. P. 1057–1071. https://doi.org/10.7150/ijms.35611
- Nidadavolu L.S., Niedernhofer L.J., Khan S.A. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress // Aging (Albany NY). 2013. V. 5. P. 460–473. https://doi.org/10.18632/aging.100571
- Zhao X., Wang T., Cai B. et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1 // Am. J. Transl. Res. 2019. V. 11. P. 2232–2244.
- Li X., Song Y., Liu D. et al. MiR-495 promotes senescence of mesenchymal stem cells by targeting Bmi-1 // Cell Physiol. Biochem. 2017. V. 42. P. 780–796. https://doi.org/10.1159/000478069
- Wang Y., Su Q., Tang H. et al. Microfracture technique combined with mesenchymal stem cells inducer represses miR-708-5p to target special at-rich sequence-binding protein 2 to drive cartilage repair and regeneration in rabbit knee osteoarthritis // Growth Factors. 2023. V. 41. P. 115–129. https://doi.org/10.1080/08977194.2023.2227269
- Lee B.P., Buric I., George-Pandeth A. et al. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/srep44620
- Kwak Y.H., Kwak D.K., Moon H.S. et al. Significant changes in serum microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: potential prognostic biomarkers // Diagnostics (Basel.). 2021. V. 11. P. 258. https://doi.org/10.3390/diagnostics11020258
- Behbahanipour M., Peymani M., Salari M. et al. Expression profiling of blood microRNAs 885, 361, and 17 in the Patients with the Parkinson’s disease: Integrating interatction data to uncover the possible triggering age-related mechanisms // Sci. Rep. 2019. V. 9. P. 13759. https://doi.org/10.1038/s41598-019-50256-3
- Zhang Z.K., Li J., Guan D. et al. A newly identified lncRNA MaR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration // J. Cachexia Sarcopenia Muscle. 2018. V. 9. P. 613–626. https://doi.org/10.1002/jcsm.12281
- Chang L., Yao H., Yao Z. et al. Comprehensive analysis of key genes, signaling pathways and miRNAs in human knee osteoarthritis: based on bioinformatics // Front. Pharmacol. 2021. V. 12. https://doi.org/10.3389/fphar.2021.730587
- Alizadeh A.H., Lively S., Lepage S. et al. MicroRNAs as prognostic markers for chondrogenic differentiation potential of equine mesenchymal stromal cells // Stem Cells Dev. 2023. V. 32. P. 693–702. https://doi.org/10.1089/scd.2022.0295
- Díaz-Prado S., Cicione C., Muiños-López E. et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes // BMC Musculoskelet. Disord. 2012. V. 13. P. 144. https://doi.org/10.1186/1471-2474-13-144
- Ipson B.R., Fletcher M.B., Espinoza S.E., Fisher A.L. Identifying exosome-derived microRNAs as candidate biomarkers of frailty // J. Frailty Aging. 2018. V. 7. P. 100–103. https://doi.org/10.14283/jfa.2017.45
- Luo J., Liu L., Shen J. et al. MiR-576-5p promotes epithelial-to-mesenchymal transition in colorectal cancer by targeting the Wnt5a-mediated Wnt/β-catenin signaling pathway // Mol. Med. Rep. 2021. V. 23. P. 94. https://doi.org/10.3892/mmr.2020.11733
补充文件
