Relationship of microRNAs with transposons in osteoarthritis development

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Conducted GWAS identified the association of osteoarthritis with more than 100 different SNPs, most of which are located in intronic and intergenic regions where genes encoding transposable elements and non-coding RNAs derived from them are located. A number of studies have also determined the activation of retroelements in joint tissues and in peripheral blood of patients with osteoarthritis. An assumption has been made that activated transposons, which cause aging and associated inflammation, influence the etiopathogenesis of osteoarthritis. To confirm this hypothesis, a search was conducted for data on changes in the expression of specific microRNAs derived from transposons during aging and osteoarthritis. As a result, 23 such microRNAs were found, the participation of which in the development of the disease is associated with an impact on genes and signaling pathways regulating cell proliferation and apoptosis, inflammatory and metabolic processes, and mechanisms of cartilage degradation. Changes in expression of these microRNAs indicate that the epigenetic mechanisms of aging are involved in osteoarthritis etiopathogenesis due to pathological activation of transposable elements complementary to the sequences of non-coding RNAs derived from them in evolution.

全文:

受限制的访问

作者简介

R. Mustafin

Bashkir State Medical University

编辑信件的主要联系方式.
Email: ruji79@mail.ru
俄罗斯联邦, Ufa

Е. Khusnutdinova

Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences

Email: ruji79@mail.ru
俄罗斯联邦, Ufa

参考

  1. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021 // Lancet Rheumatol. 2023. V. 5. e508–e522. https://doi.org/10.1016/S2665-9913(23)00163-7
  2. Boer C.G., Hatzikotoulas K., Southam L. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations // Cell. 2021. V. 184. P. 4784–4818.e17. https://doi.org/10.1016/j.cell.2021.07.038
  3. Faber B.G., Frysz M., Boer C.G. et al. The identification of distinct protective and susceptibility mechanisms for hip osteoarthritis: Findings from a genome-wide association study meta-analysis of minimum joint space width and Mendelian randomisation cluster analyses // EBioMedicine. 2023. V. 95. https://doi.org/10.1016/j.ebiom.2023.104759
  4. Chen X., Wu Q., Cao X. et al. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis // Int. Immunopharmacol. 2022. V. 112. https://doi.org/10.1016/j.intimp.2022.109228
  5. Jiang Y., Shen Y., Ding L. et al. Identification of transcription factors and construction of a novel miRNA regulatory network in primary osteoarthritis by integrated analysis // BMC Musculoskelet. Disord. 2021. V. 22. P. 1008. https://doi.org/10.1186/s12891-021-04894-2
  6. Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis // Osteoarthritis Cartilage. 2022. V. 30. P. 184–195. https://doi.org/10.1016/j.joca.2021.04.020
  7. Vos T., Flaxman A.D., Naghavi M. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010 // Lancet. 2012. V. 380. P. 2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2
  8. De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. P. 73–78.
  9. Gorbunova V., Seluanov A., Mita P. et al. The role of retrotransposable elements in ageing and age-associated diseases // Nature. 2021. V. 596. P. 43–53. https://doi.org/10.1038/s41586-021-03542-y
  10. Bendiksen S., Martinez-Zubiavrra I., Tümmler C. et al. Human endogenous retrovirus W activity in cartilage of osteoarthritis patients // Biomed. Res. Int. 2014. V. 2014. https://doi.org/10.1155/2014/698609
  11. Teerawattanapong N., Udomsinprasert W., Ngarmukos S. et al. Blood leukocyte LINE-1 hypomethylation and oxidative stress in knee osteoarthritis // Heliyon. 2019. V. 5. https://doi.org/10.1016/j.heliyon.2019.e01774
  12. Lee D.H., Bae W.H., Ha H. et al. The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p // Sci. Rep. 2024. V. 14. P. 4723. https://doi.org/10.1038/s41598-024-55332-x
  13. Conley A.B., Jordan I.K. Cell type-specific termination of transcription by transposable element sequences // Mob. DNA. 2012. V. 3. P. 15. https://doi.org/10.1186/1759-8753-3-15
  14. Daniel C., Behm M., Öhman M. The role of Alu elements in the cis-regulation of RNA processing // Cell. Mol. Life Sci. 2015. V. 72. P. 4063–4076. https://doi.org/10.1007/s00018-015-1990-3
  15. Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160. https://doi.org/10.1109/TCBB.2015.2511767
  16. Chen J., Chen S., Cai D. et al. The role of Sirt6 in osteoarthritis and its effect on macrophage polarization // Bioengineered. 2022. V. 13. P. 9677–9689. https://doi.org/10.1080/21655979.2022.2059610
  17. Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. P. 5011. https://doi.org/10.1038/ncomms6011
  18. Zhou F., Mei J., Han X. et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κ B/MAPK signaling and protecting chondrocytes // Acta. Pharm. Sin. B. 2019. V. 9. P. 973–985. https://doi.org/10.1016/j.apsb.2019.01.015
  19. Saetan N., Honsawek S., Tanavalee S. et al. Association of plasma and synovial fluid interferon-γ inducible protein-10 with radiographic severity in knee osteoarthritis // Clin. Biochem. 2011. V. 44. P. 1218–1222. https://doi.org/10.1016/j.clinbiochem.2011.07.010
  20. Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. V. 21. P. 742–749.
  21. Lu F., Liu P., Zhang Q. et al. Association between the polymorphism of IL-17A and IL-17F gene with knee osteoarthritis risk: A meta-analysis based on case-control studies // J. Orthop. Surg. Res. 2019. V. 14. P. 445. https://doi.org/10.1186/s13018-019-1495-0
  22. Budhiparama N.C., Lumban-Gaol I., Sudoyo H. Interleukin-1 genetic polymorphisms in knee osteoarthritis: What do we know? A meta-analysis and systematic review // J. Orthop. Surg. (Hong Kong). 2022. V. 30. https://doi.org/10.1177/23094990221076652
  23. Deng X., Ye K., Tang J., Huang Y. Association of rs1800795 and rs1800796 polymorphisms in interleukin-6 gene and osteoarthritis risk: Evidence from a meta-analysis // Nucleosides Nucleotides Nucleic Acids. 2023. V. 42. P. 328–342. https://doi.org/10.1080/15257770.2022.2147541
  24. Rodriguez-Fontenla C., Calaza M., Evangelou E. et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies // Arthritis Rheumatol. 2014. V. 66. P. 940–949. https://doi.org/10.1002/art.38300
  25. Liu Y., Lu T., Liu Z. et al. Six macrophage-associated genes in synovium constitute a novel diagnostic signature for osteoarthritis // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.936606
  26. Yang L., Chen Z., Guo H. et al. Extensive cytokine analysis in synovial fluid of osteoarthritis patients // Cytokine. 2021. V. 143. https://doi.org/10.1016/j.cyto.2021.155546
  27. Pan L., Yang F., Cao X. et al. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis // Front. Endocrinol (Lausanne). 2023. V. 14. https://doi.org/10.3389/fendo.2023.1144258
  28. Xu J., Chen K., Yu Y. et al. Identification of immune-related risk genes in osteoarthritis based on bioinformatics analysis and machine learning // J. Pers. Med. 2023. V. 13. P. 367. https://doi.org/10.3390/jpm13020367
  29. Cheng P., Gong S., Guo C. et al. Exploration of effective biomarkers and infiltrating Immune cells in Osteoarthritis based on bioinformatics analysis // Artif. Cells. Nanomed. Biotechnol. 2023. V. 51. P. 242–254. https://doi.org/10.1080/21691401.2023.2185627
  30. Li J., Wang G., Xv X. et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1134412
  31. Grandi F.C., Bhutani N. Epigenetic therapies for osteoarthritis // Trends. Pharmacol. Sci. 2020. V. 41. P. 557–569. https://doi.org/10.1016/j.tips.2020.05.008
  32. Knights A.J., Redding S.J., Maerz T. Inflammation in osteoarthritis: The latest progress and ongoing challenges // Curr. Opin. Rheumatol. 2023. V. 35. P. 128–134.
  33. Zhang J., Zhang S., Zhou Y. et al. KLF9 and EPYC acting as feature genes for osteoarthritis and their association with immune infiltration // J. Orthop. Surg. Res. 2022. V. 17. P. 365. https://doi.org/10.1186/s13018-022-03247-6
  34. Zhang Q., Sun C., Liu X. et al. Mechanism of immune infiltration in synovial tissue of osteoarthritis: A gene expression-based study // J. Orthop. Surg. Res. 2023. V. 18. P. 58. https://doi.org/10.1186/s13018-023-03541-x
  35. Xia D., Wang J., Yang S. et al. Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies // Medicine (Baltimore). 2023. V. 102. https://doi.org/10.1097/MD.0000000000035355
  36. Xu L., Wang Z., Wang G. Screening of biomarkers associated with osteoarthritis aging genes and immune correlation studies // Int. J. Gen. Med. 2024. V. 17. P. 205–224. https://doi.org/10.2147/IJGM.S447035
  37. Cornec A., Poirier E.Z. Interplay between RNA interference and transposable elements in mammals // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1212086
  38. Cho J., Paszkowski J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge // eLife. 2017. V. 6. https://doi.org/10.7554/eLife.30038
  39. Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/https://doi.org/ 10.1038/nsmb.2799
  40. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134. https://doi.org/https://doi.org/ 10.1016/j.devcel.2018.06.022
  41. Playfoot C.J., Sheppard S., Planet E., Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development // RNA. 2022. V. 28. P. 1157–1171. https://doi.org/10.1261/rna.079100.122
  42. McCue A.D., Nuthikattu S., Slotkin R.K. Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs // RNA Biol. 2013. V. 10. P. 1379–1395. https://doi.org/10.4161/rna.25555
  43. Lee D.H., Bae W.H., Ha H. et al. Z-DNA-containing long terminal repeats of human endogenous retrovirus families provide alternative promoters for human functional genes // Mol. Cells. 2022. V. 45. P. 522–530. https://doi.org/10.14348/molcells.2022.0060
  44. Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as a effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V. 10. P. 645. https://doi.org/10.3389/fgene.2019.00645
  45. Tristán-Ramos P., Rubio-Roldan A., Peris G. et al. The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition // Nat. Commun. 2020. V. 11. P. 5712. https://doi.org/10.1038/s41467-020-19430-4
  46. Peng S., Yan Y., Li R. et al. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway // Ann. N. Y. Acad. Sci. 2021. V. 1503. P. 48–59. https://doi.org/10.1111/nyas.14590
  47. Dhahbi J.M., Atamna H., Boffelli D. et al. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence // PLoS One. 2011. V. 6. https://doi.org/10.1371/journal.pone.0020509
  48. Lu M.Y., Yang Y.H., Wu X. et al. Effect of needle-knife on chondrocyte apoptosis of knee joint in rabbits with knee osteoarthritis based on CircSERPINE2-miR-1271-5P-ERG axis // Zhongguo Zhen Jiu. 2023. V. 43. P. 447–453. https://doi.org/10.13703/j.0255-2930.20220411-k0001
  49. Xie W.P., Ma T., Liang Y.C. et al. Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis // Zhongguo Zhong Yao Za Zhi. 2023. V. 48. P. 4843–4851. https://doi.org/10.19540/j.cnki.cjcmm.20230510.708
  50. Ju C., Liu R., Zhang Y. et al. Exosomes may be the potential new direction of research in osteoarthritis management // Biomed. Res. Int. 2019. V. 3. https://doi.org/10.1155/2019/7695768
  51. Qin W.J., Wang W.P., Wang X.B. et al. MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma // Eur. Rev. Med. Pharmacol. Sci. 2019. V. 23. P. 10332–10342. https://doi.org/10.26355/eurrev_201912_19671
  52. Noren Hooten N., Fitzpatrick M., Wood W.H 3rd et al. Age-related changes in microRNA levels in serum // Aging (Albany NY). 2013. V. 5. P. 725–740. https://doi.org/10.18632/aging.100603
  53. Xie Y., Zhang Y., Liu X. et al. miR-151-5p promotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT // Oncol. Rep. 2023. V. 49. P. 50. https://doi.org/10.3892/or.2023.8487
  54. Wang Y., Yu C., Zhang H. Lipopolysaccharides-mediated injury to chondrogenic ATDC5 cells can be relieved by Sinomenine via downregulating microRNA-192 // Phytother. Res. 2019. V. 33. P. 1827–1836. https://doi.org/10.1002/ptr.6372
  55. Sataranatarajan K., Feliers D., Mariappan M.M. et al. Molecular events in matrix protein metabolism in the aging kidney // Aging Cell. 2012. V. 11. P. 1065–1073. https://doi.org/10.1111/acel.12008
  56. Smith-Vikos T., Liu Z., Parsons C. A serum miRNA profile of human longevity: Findings from the Baltimore Longitudinal Study of Aging (BLSA) // Aging (Albany NY). 2016. V. 8. P. 2971–2987. https://doi.org/10.18632/aging.101106
  57. Liu H., Luo J. miR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis // J. Biochem. 2019. V. 166. P. 495–502. https://doi.org/10.1093/jb/mvz065
  58. Liu Y., Zhang Y. Hsa_circ_0134111 promotes osteoarthritis progression by regulating miR-224-5p/CCL1 interaction // Aging (Albany NY). 2021. V. 13. P. 20383–20394. https://doi.org/10.18632/aging.203420
  59. Chen H., Chen F., Hu F. et al. MicroRNA-224-5p nanoparticles balance homeostasis via inhibiting cartilage degeneration and synovial inflammation for synergistic alleviation of osteoarthritis // Acta Biomater. 2023. V. 167. P. 401–415. https://doi.org/10.1016/j.actbio.2023.06.010
  60. Francisco S., Martinho V., Ferreira M. et al. The role of microRNAs in proteostasis decline and protein aggregation during brain and skeletal muscle aging // Int. J. Mol. Sci. 2022. V. 23. P. 3232. https://doi.org/10.3390/ijms23063232
  61. Beyer C., Zampetaki A., Lin N.Y. et al. Signature of circulating microRNAs in osteoarthritis // Ann. Rheum. Dis. 2015. V. 74. e18. https://doi.org/10.1136/annrheumdis-2013-204698
  62. Morsiani C., Bacalini M.G., Collura S. et al. Blood circulating miR-28-5p and let-7d-5p associate with premature ageing in Down syndrome // Mech. Ageing Dev. 2022. V. 206. https://doi.org/10.1016/j.mad.2022.111691
  63. Zhou S.L., Hu Z.Q., Zhou Z.J. et al. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis // Hepatology. 2016. V. 63. P. 1560–1575. https://doi.org/10.1002/hep.28445
  64. Costa V., De Fine M., Carina V. et al. How miR-31-5p and miR-33a-5p regulates SP1/CX43 expression in osteoarthritis disease: preliminary insights // Int. J. Mol. Sci. 2021. V. 22. P. 2471. https://doi.org/10.3390/ijms22052471
  65. Dellago H., Preschitz-Kammerhofer B., Terlecki-Zaniewicz L. et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan // Aging Cell. 2013. V. 12. P. 446–458. https://doi.org/10.1111/acel.12069
  66. Ali S.A., Espin-Garcia O., Wong A.K. et al. Circulating microRNAs differentiate fast-progressing from slow-progressing and non-progressing knee osteoarthritis in the Osteoarthritis Initiative cohort // Ther. Adv. Musculoskelet. Dis. 2022. V. 14. https://doi.org/10.1177/1759720X221082917
  67. Dalmasso B., Hatse S., Brouwers B. et al. Age-related microRNAs in older breast cancer patients: biomarker potential and evolution during adjuvant chemotherapy // BMC Cancer. 2018. V. 18. P. 1014. https://doi.org/10.1186/s12885-018-4920-6
  68. Lin Z., Ma Y., Zhu X. et al. Potential predictive and therapeutic applications of small extracellular vesicles-derived circPARD3B in osteoarthritis // Front. Pharmacol. 2022. V. 13. https://doi.org/10.3389/fphar.2022.968776
  69. Paradowska-Gorycka A., Wajda A., Rzeszotarska E. et al. miR-10 and Its negative correlation with serum IL-35 concentration and positive correlation with STAT5a expression in patients with rheumatoid arthritis // Int. J. Mol. Sci. 2022. V. 23. P. 7925. https://doi.org/10.3390/ijms23147925
  70. Yang X., Tan J., Shen J. et al. Endothelial cell-derived extracellular vesicles target TLR4 via miRNA-326-3p to regulate skin fibroblasts senescence // J. Immunol. Res. 2022. V. 2022. P. 3371982. https://doi.org/10.1155/2022/3371982
  71. Wilson T.G., Baghel M., Kaur N. et al. Characterization of miR-335-5p and miR-335-3p in human osteoarthritic tissues // Arthritis Res. Ther. 2023. V. 25. P. 105. https://doi.org/10.1186/s13075-023-03088-6
  72. Xia S., Zhao J., Zhang D. et al. MiR-335-5p inhibits endochondral ossification by directly targeting SP1 in TMJ OA // Oral Dis. 2023. V. 20. https://doi.org/10.1111/odi.14736
  73. Raihan O., Brishti A., Molla M.R. et al. The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain // Neuroscience. 2018. V. 390. P. 160–173. https://doi.org/10.1016/j.neuroscience.2018.08.003
  74. Duan Y., Yu C., Yan M. et al. m6A regulator-mediated RNA methylation modification patterns regulate the immune microenvironment in osteoarthritis // Front. Genet. 2022. V. 13. https://doi.org/fgene.2022.921256
  75. Zhang H., Yang H., Zhang C. et al. Investigation of microRNA expression in human serum during the aging process // J. Gerontol. A. Biol. Sci. Med. Sci. 2015. V. 70. P. 102–109. https://doi.org/10.1093/gerona/glu145
  76. ElSharawy A., Keller A., Flachsbart F. et al. Genome-wide miRNA signatures of human longevity // Aging Cell. 2012. V. 11. P. 607–616. https://doi.org/10.1111/j.1474-9726.2012.00824.x
  77. Shi F.L., Ren L.X. Up-regulated miR-374a-3p relieves lipopolysaccharides induced injury in CHON-001 cells via regulating Wingless-type MMTV integration site family member 5B // Mol. Cell. Probes. 2020. V. 51. https://doi.org/10.1016/j.mcp.2020.101541
  78. Feng L., Yang Z., Li Y. et al. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis // Mol. Ther. Nucleic Acids. 2022. V. 28. P. 328–341. https://doi.org/10.1016/j.omtn.2022.03.016
  79. Guo D., Ye Y., Qi J. et al. Age and sex differences in microRNAs expression during the process of thymus aging // Acta Biochim. Biophys. Sin. (Shanghai). 2017. V. 49. P. 409–419. https://doi.org/10.1093/abbs/gmx029
  80. Zhang W., Cheng P., Hu W. et al. Inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9 // Cancer Gene Ther. 2018. V. 25. P. 326–338. https://doi.org/10.1038/s41417-018-0029-y
  81. Li X., Wu J., Zhang K. et al. MiR-384-5p targets Gli2 and negatively regulates age-related osteogenic differentiation of rat bone marrow mesenchymal stem cells // Stem. Cells Dev. 2019. V. 28. P. 791–798. https://doi.org/10.1089/scd.2019.0044
  82. Zhang H., Xiang X., Zhou B. et al. Circular RNA SLTM as a miR-421-competing endogenous RNA to mediate HMGB2 expression stimulates apoptosis and inflammation in arthritic chondrocytes // J. Biochem. Mol. Toxicol. 2023. V. 37. https://doi.org/10.1002/jbt.23306
  83. Li G., Song H., Chen L. et al. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract // Exp. Cell. Res. 2017. V. 356. P. 20–27. https://doi.org/10.1016/j.yexcr.2017.04.002
  84. Chen Y.J., Chang W.A., Wu L.Y. et al. Identification of novel genes in osteoarthritic fibroblast-like synoviocytes using next-generation sequencing and bioinformatics approaches // Int. J. Med. Sci. 2019. V. 16. P. 1057–1071. https://doi.org/10.7150/ijms.35611
  85. Nidadavolu L.S., Niedernhofer L.J., Khan S.A. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress // Aging (Albany NY). 2013. V. 5. P. 460–473. https://doi.org/10.18632/aging.100571
  86. Zhao X., Wang T., Cai B. et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1 // Am. J. Transl. Res. 2019. V. 11. P. 2232–2244.
  87. Li X., Song Y., Liu D. et al. MiR-495 promotes senescence of mesenchymal stem cells by targeting Bmi-1 // Cell Physiol. Biochem. 2017. V. 42. P. 780–796. https://doi.org/10.1159/000478069
  88. Wang Y., Su Q., Tang H. et al. Microfracture technique combined with mesenchymal stem cells inducer represses miR-708-5p to target special at-rich sequence-binding protein 2 to drive cartilage repair and regeneration in rabbit knee osteoarthritis // Growth Factors. 2023. V. 41. P. 115–129. https://doi.org/10.1080/08977194.2023.2227269
  89. Lee B.P., Buric I., George-Pandeth A. et al. MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/srep44620
  90. Kwak Y.H., Kwak D.K., Moon H.S. et al. Significant changes in serum microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: potential prognostic biomarkers // Diagnostics (Basel.). 2021. V. 11. P. 258. https://doi.org/10.3390/diagnostics11020258
  91. Behbahanipour M., Peymani M., Salari M. et al. Expression profiling of blood microRNAs 885, 361, and 17 in the Patients with the Parkinson’s disease: Integrating interatction data to uncover the possible triggering age-related mechanisms // Sci. Rep. 2019. V. 9. P. 13759. https://doi.org/10.1038/s41598-019-50256-3
  92. Zhang Z.K., Li J., Guan D. et al. A newly identified lncRNA MaR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration // J. Cachexia Sarcopenia Muscle. 2018. V. 9. P. 613–626. https://doi.org/10.1002/jcsm.12281
  93. Chang L., Yao H., Yao Z. et al. Comprehensive analysis of key genes, signaling pathways and miRNAs in human knee osteoarthritis: based on bioinformatics // Front. Pharmacol. 2021. V. 12. https://doi.org/10.3389/fphar.2021.730587
  94. Alizadeh A.H., Lively S., Lepage S. et al. MicroRNAs as prognostic markers for chondrogenic differentiation potential of equine mesenchymal stromal cells // Stem Cells Dev. 2023. V. 32. P. 693–702. https://doi.org/10.1089/scd.2022.0295
  95. Díaz-Prado S., Cicione C., Muiños-López E. et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes // BMC Musculoskelet. Disord. 2012. V. 13. P. 144. https://doi.org/10.1186/1471-2474-13-144
  96. Ipson B.R., Fletcher M.B., Espinoza S.E., Fisher A.L. Identifying exosome-derived microRNAs as candidate biomarkers of frailty // J. Frailty Aging. 2018. V. 7. P. 100–103. https://doi.org/10.14283/jfa.2017.45
  97. Luo J., Liu L., Shen J. et al. MiR-576-5p promotes epithelial-to-mesenchymal transition in colorectal cancer by targeting the Wnt5a-mediated Wnt/β-catenin signaling pathway // Mol. Med. Rep. 2021. V. 23. P. 94. https://doi.org/10.3892/mmr.2020.11733

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagram of the probable ways in which mobile genetic elements (MGE) activated during aging affect the epigenetic mechanisms of osteoarthritis development.

下载 (531KB)
3. 2. The mechanisms of the effect of transposons on the epigenetic regulation of microRNAs with the participation of small interfering RNAs (miRNAs).

下载 (490KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».