Genetic structure of wolf populations in North Eurasia: the effect of exclusion of closely related individuals from analysis
- Authors: Kazimirov P.А.1,2, Belokon Y.S.1, Belokon M.M.1, Bondarev A.Y.3, Davydov A.V.4, Zakharov Е.S.5, Leontyev S.V.6, Politov D.V.1,2
-
Affiliations:
- Vavilov Institute of General Genetics Russian Academy of Sciences
- All-Russian Research Institute for Environmental Protection
- Altai State Agricultural University
- Federal center of development of the hunting economy
- Ammosov North-Eastern Federal University
- Limited Liability Partnership “National Center of Biotechnology”
- Issue: Vol 60, No 7 (2024)
- Pages: 31-44
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journals.rcsi.science/0016-6758/article/view/267639
- DOI: https://doi.org/10.31857/S0016675824070034
- EDN: https://elibrary.ru/BIIKDR
- ID: 267639
Cite item
Abstract
We describe the results of analysis of genetic structure and spatial autocorrelation in the populations of grey wolf (Canis lupus Linnaeus, 1758) on the territory of the Russian Federation and the Republic of Kazakhstan, based on 20 autosomal microsatellite markers. With the use of molecular markers, we uncovered hidden genealogical patterns reaching as far as 700–1600 km and having the most pronounced effect on distances up to 150 km. Our research has shown that identification and exclusion of closely related genotypes has limited effect on the results of analysis of intrapopulation genetic diversity. Meanwhile, such procedure is recommended for researching population structure, as it allows for streamlining some statistical approaches. Results of our work demonstrate integral effect of natal migration, working against the differentiation effect of philopatry. Finally, we also show that the exclusion of closely related individuals can lead to underestimation of values of genetic distances between populations.
Full Text

About the authors
P. А. Kazimirov
Vavilov Institute of General Genetics Russian Academy of Sciences; All-Russian Research Institute for Environmental Protection
Author for correspondence.
Email: farenklaw@gmail.com
Russian Federation, 119991, Moscow; 117628, Moscow
Yu. S. Belokon
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: farenklaw@gmail.com
Russian Federation, 119991, Moscow
M. M. Belokon
Vavilov Institute of General Genetics Russian Academy of Sciences
Email: farenklaw@gmail.com
Russian Federation, 119991, Moscow
A. Ya. Bondarev
Altai State Agricultural University
Email: farenklaw@gmail.com
Russian Federation, 656049, Barnaul
A. V. Davydov
Federal center of development of the hunting economy
Email: farenklaw@gmail.com
Russian Federation, 105118, Moscow
Е. S. Zakharov
Ammosov North-Eastern Federal University
Email: farenklaw@gmail.com
Russian Federation, 677000, Yakutsk
S. V. Leontyev
Limited Liability Partnership “National Center of Biotechnology”
Email: farenklaw@gmail.com
Kazakhstan, 010000, Astana
D. V. Politov
Vavilov Institute of General Genetics Russian Academy of Sciences; All-Russian Research Institute for Environmental Protection
Email: dmitri_p@inbox.ru
Russian Federation, 119991, Moscow; 117628, Moscow
References
- Mech L.D., Boitani L. Wolves: behavior, ecology, and conservation. Chicago: Univ. Chicago Press, 2006. 472 p.
- Бибиков Д.И. Волк. Происхождение, систематика, морфология, экология. М.: Наука, 1985. 608 с.
- Mysłajek R.W., Tracz M., Tracz M. et al. Spatial organization in wolves Canis lupus recolonizing north-west Poland: Large territories at low population density // Mamm. Biol. 2018. V. 92. P. 37–44. https://doi.org/10.1016/j.mambio.2018.01.006
- Åkesson M., Liberg O., Sand H. et al. Genetic rescue in a severely inbred wolf population // Mol. Ecol. 2016. V. 25. № 19. P. 4745–4756. https://doi.org/10.1111/mec.13797
- Caniglia R., Fabbri E., Galaverni M. et al. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population // J. Mamm. 2014. V. 95. № 1. P. 41–59. https://doi.org/10.1644/13-MAMM-A-039
- Randall D.A., Pollinger J.P., Argaw K. et al. Fine-scale genetic structure in Ethiopian wolves imposed by sociality, migration, and population bottlenecks // Cons. Genet. 2010. V. 11. № 1. P. 89–101. https://doi.org/10.1007/s10592-009-0005-z
- Szewczyk M., Nowak S., Niedźwiecka N. et al. Dynamic range expansion leads to establishment of a new, genetically distinct wolf population in Central Europe // Sci. Rep. 2019. V. 9. № 1. P. 1–16. https://doi.org/10.1038/s41598-019-55273-w
- Pilot M., Dabrowski M.J., Hayrapetyan V. et al. Genetic variability of the grey wolf Canis lupus in the Caucasus in comparison with Europe and the Middle East: distinct or intermediary population? // PLoS One. 2014. V. 9. № 4. https://doi.org/10.1371/journal.pone.0093828
- Казимиров П.А., Леонтьев С.В., Нечаева А.В. и др. Популяционно-генетическая структура степного волка России и Казахстана по микросателлитным локусам // Генетика. 2022. Т. 58. № 11. С. 1261–1272. https://doi.org/10.31857/S0016675822110042
- Toonen R.J., Hughes S. Increased throughput for fragment analysis on ABI Prism 377 automated sequencer using a membrane comb and STRand software // Biotechniques. 2001 V. 31 P. 1320–1324. http://www.vgl.ucdavis.edu/STRand
- Kamvar Z.N., Brooks J.C., Grünwald N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality // Front. Genet. 2015. V. 6. https://doi.org/10.3389/fgene.2015.00208
- Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction // PeerJ. 2014. V. 2. https://doi.org/10.7717/peerj.281
- R Core Team R: A language and environment for statistical computing. 2022. Available online at https://www.R-project.org/
- Clark L.V., Drauch Schreier A. Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables // Mol. Ecol. Res. 2017. V. 17. № 5. P. 1090–1103. https://doi.org/10.1111/1755-0998.12639
- Clark L.V., Jasieniuk M. Polysat: An R package for polyploid microsatellite analysis // Mol. Ecol. Res. 2011. V. 11. № 3. P. 562–566. https://doi.org/10.1111/j.1755-0998.2011.02985.x
- Paradis E. pegas: An R package for population genetics with an integrated–modular approach // Bioinformatics. 2010. V. 26. P. 419–420. https://doi.org/10.1093/bioinformatics/btp696
- Adamack A.T., Gruber B. PopGenReport: Simplifying basic population genetic analyses in R // Meth. Ecol. Evol. 2014. V. 5(4). 384–387. https://doi.org/10.1111/2041-210X.12158
- Gruber B., Adamack A.T. Landgenreport: A new R function to simplify landscape genetic analysis using resistance surface layers // Mol. Ecol. Res. 2015. V 15(5). 1172–1178. doi: 10.1111/1755-0998.12381
- Peakall R., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
- Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update // Bioinformatics. 2012. V. 28. № 19. P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
- Pew J., Wang J., Muir P., Frasier T. Related: an R package for analyzing pairwise relatedness data based on codominant molecular markers // Mol. Ecol. Res. 2015. V. 15. P. 557–561. https://doi.org/10.1111/1755-0998.12323
- Grolemund G., Wickham H. Dates and times made easy with lubridate // J. Stat. Software. 2011. V. 40. № 3. P. 1–25. https://doi.org/10.18637/jss.v040.i03
- Kassambara A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests // 2023. https://cran.r-project.org/web/packages/rstatix/index.html
- StatSoft, Inc. STATISTICA (data analysis software system), version 8. 2007. www.statsoft.com
- Fong Y., Huang Y., Gilbert P., Permar S. chngpt: Threshold regression model estimation and inference // BMC Bioinformatics. 2017. V. 18. № 454. https://doi.org/10.1186/s12859-017-1863-x
- Zeileis A., Hothorn T. Diagnostic checking in regression relationships // R News. 2002. V. 2. № 3. P. 7–10.
- Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies // Genetics. 2003. V. 16. № 4. P. 1567–1587. https://doi.org/10.1093/genetics/164.4.1567
- Hubisz M.J., Falush D., Stephens M., Pri Tchard J. K. Inferring weak population structure with the assistance of sample group information // Mol. Ecol. Res. 2009. № 9. P. 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
- Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. № 2. P. 945–959. https://doi.org/10.1093/genetics/155.2.945
- Francis R.M. pophelper: An R package and web app to analyse and visualize population structure // Mol. Ecol. Res. 2017 V. 17. P. 27–32. https://doi.org/10.1111/1755-0998.12509
- Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study // Mol. Ecol. 2005. V. 14. № 8. P. 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
- Wang J. An estimator for pairwise relatedness using molecular markers // Genetics. 2002. V. 160. № 3. P. 1203–1215. https://doi.org/10.1093/genetics/160.3.1203
- Li C.C., Weeks D.E., Chakravarti A. Similarity of DNA fingerprints due to chance and relatedness // Human Heredity. 1993. V. 43. № 1. P. 45–52. https://doi.org/10.1159/000154113
- Queller D.C., Goodnight K.F. Estimating relatedness using genetic markers // Evolution. 1989. V. 43. № 2. P. 258–275. https://doi.org/10.2307/2409206
- Lynch M., Ritland K. Estimation of pairwise relatedness with molecular markers // Genetics. 1999. V. 152. № 4. P. 1753–1766. https://doi.org/10.1093/genetics/152.4.1753
- Ellegren H. Inbreeding and relatedness in Scandinavian grey wolves Canis lupus // Hereditas. 1999. V. 130. № 3. P. 239–244. https://doi.org/10.1111/j.1601-5223.1999.00239.x
- Liberg O., Andren H., Pedersen H.C. et al. Severe inbreeding depression in a wild wolf (Canis lupus) population // Biol. Letters. 2005. V. 1. № 1. P. 17–20. https://doi.org/10.1098/rsbl.2004.0266
- Fredrickson R.J., Siminski P., Woolf M., Hedrick P.W. Genetic rescue and inbreeding depression in Mexican wolves // Proc. Royal Soc. B-Biol. Sci. 2007. V. 274. № 1623. P. 2365–2371. https://doi.org/10.1098/rspb.2007.0785
- Korablev M.P., Korablev N.P., Korablev P.N. Genetic diversity and population structure of the grey wolf (Canis lupus Linnaeus, 1758) and evidence of wolf× dog hybridisation in the centre of European Russia // Mamm. Biology. 2020. P. 1–14. https://doi.org/10.1007/s42991-020-00074-2
- Hindrikson M., Remm J., Pilot M. et al. Wolf population genetics in Europe: A systematic review, meta-analysis and suggestions for conservation and management // Biol. Reviews. 2017. V. 92. № 3. P. 1601–1629. https://doi.org/10.1111/brv.12298
- Gompper M.E., Wayne R.K. Genetic relatedness among individuals within carnivore societies // Carnivore Behavior, Ecol. and Evol. V. 2. Ithaca and London: Cornell Univ. Press, 1996. P. 429–452. https://doi.org/10.7591/9781501745829-020
- Jędrzejewski W., Branicki W., Veit C. et al. Genetic diversity and relatedness within packs in an intensely hunted population of wolves Canis lupus // Acta Theriologica. 2005. V. 50. № 1. P. 3–22. https://doi.org/10.1007/BF03192614
- Кочетков В.В. Филопатрия и дисперсия в популяции волка (Canis lupus L.) // Сиб. экол. журн. 2015. Т. 22. № 3. С. 388–397. https://doi.org/10.15372/SEJ20150306
Supplementary files
