Novel real-time PCR methods for bovine haplotypes HH3, HH6, HH7 diagnosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dairy cattle breeding is aimed at improving the productivity, mainly through the use of a limited number of breeding bulls. As a result, an increase in inbreeding is observed causing accumulation of heterozygotes-carriers of recessive lethal mutations. A rise in the number of carriers reduces the profitability of dairy farms, since the frequency of embryonic and post-embryonic mortality increases, and the fertility of cows decreases. This paper presents the results of the development of test systems for rapid and inexpensive diagnostics of genetically determined cattle diseases that are significant for animal husbandry, namely for Holstein haplotypes 3, 6 and 7. The diagnostic technology is real-time PCR using TaqMan probes. Carriers of the Holstein haplotype 3 were not found in any of the studied populations. The carrier frequencies for HH6 and HH7 were 0.95 and 1.92%, respectively. Carrier frequencies are consistent with the results of studies worldwide, however, it is worth noting that only few large-scale screening studies have been carried out, since causative loci have been mapped relatively recently.

Full Text

Restricted Access

About the authors

V. D. Zubareva

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

Author for correspondence.
Email: nauka_sokolova@mail.ru
Russian Federation, Ekaterinburg, 620142

M. V. Bytov

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

Email: nauka_sokolova@mail.ru
Russian Federation, Ekaterinburg, 620142

O. S. Zaitseva

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

Email: nauka_sokolova@mail.ru
Russian Federation, Ekaterinburg, 620142

O. V. Sokolova

Ural Federal Agrarian Scientific Research Centre, Ural Branch of Russian Academy of Sciences

Email: nauka_sokolova@mail.ru
Russian Federation, Ekaterinburg, 620142

References

  1. Абдельманова А.С., Волкова В.В., Доцев А.В. и др. Характеристика генетического разнообразия современной и архивной популяций крупного рогатого скота черно-пестрой породы с использованием микросателлитных маркеров // Достиж. науки и техники АПК. 2020. № 34-2. С. 34‒38. https://doi.org/10.24411/0235-2451-2020-10207
  2. Зиновьева Н.А. Гаплотипы фертильности голштинского скота // С.-хоз. биология. 2016. Т. 51. № 4. С. 423‒435. https://doi.org/10.15389/agrobiology.2016.4.423rus
  3. Van Raden P.M., Olson K.M., Null D.J. et al. Harmful recessive effects on fertility detected by absence of homozygous haplotypes // J. Dairy Sci. 2011. V. 94. № 12. P. 6153‒6161. https://doi.org/10.3168/jds.2011-4624
  4. Ortega M.S., Derek M.B., Kelsey N.L. et al. Truncation of IFT80 causes early embryonic loss in cattle // bioRxiv. 2022. https://doi.org/10.1101/2021.07.02.450952.
  5. Fritz S., Hoze C., Rebours E. et al. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle // J. Dairy Sci. 2018. V. 101. № 7. P. 6220‒6231. https://doi.org/10.3168/jds.2017-14119
  6. Hoze C., Escouflaire C., Mesbah-Uddin M. et al. Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle // J. Dairy Sci. 2020. V. 103. № 1. P. 607‒612. https://doi.org/10.3168/jds.2019-17056
  7. Hafliger I.M., Spengeler M., Seefried F.R. et al. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle // Sci. Rep. 2022. V. 12. № 1. Article 5435. https://doi.org/10.1038/s41598-022-09403-6
  8. Wu X., Mesbah-Uddin M., Guldbrandtsen B. et al. Novel haplotypes responsible for prenatal death in Nordic Red and Danish Jersey cattle // J. Dairy Sci. 2020. V. 103. № 5. P. 4570‒4578. https://doi.org/10.3168/jds.2019-17831
  9. Dechow C.D., Frye E., Maunsell F.P. Identification of a putative haplotype associated with recumbency in Holstein calves // JDS Commun. 2022. V. 3. № 6. P. 412‒415. https://doi.org/10.3168/jdsc.2022-0224
  10. Wu X., Mesbah-Uddin M., Guldbrandtsen B. et al. Haplotypes responsible for early embryonic lethality detected in Nordic Holsteins // J. Dairy Sci. 2019. V. 102. № 12. P. 11116‒11123. https://doi.org/10.3168/jds.2019-16651
  11. McClure M.C., Bickhart D., Null D. et al. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3 // PLoS One. 2014. V. 9. № 3. https://doi.org/10.1371/journal.pone.0092769.
  12. Kalendar R., Lee D., Schulman A.H. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis // Genomics. 2011. V. 98. № 2. P. 137‒144. https://doi.org/10.1016/j.ygeno.2011.04.009
  13. Kalendar R., Khassenov B., Ramankulov Y. et al. Fast PCR: An in silico tool for fast primer and probe design and advanced sequence analysis // Genomics. 2017. V. 109. № 3-4. P. 312‒319. https://doi.org/10.1016/j.ygeno.2017.05.005
  14. Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: А tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V. 13. https://doi.org/10.1186/1471-2105-13-134.
  15. Owczarzy R., Tataurov A.V., Wu Y. et al. IDT SciTools: A suite for analysis and design of nucleic acid oligomers // Nucl. Ac. Res. 2008. V. 36. Article W163‒W169. https://doi.org/10.1093/nar/gkn198
  16. Breslauer K.J., Frank R., Blocker H. et al. Predicting DNA duplex stability from the base sequence // Proc. Natl Acad. Sci. U.S.A. 1986. V. 83. № 11. P. 3746‒3750. https://doi.org/10.1073/pnas.83.11.3746
  17. Zhang Y., Liang D., Huang H. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle // J. Dairy Sci. 2020. V. 103. № 1. P. 619‒624. https://doi.org/10.3168/jds.2019-16345
  18. Модоров М.В., Мартынов Н.А., Шкуратова И.А. и др. Распространение рецессивных генетических нарушений в уральской популяции крупного рогатого скота // Генетика. 2022. Т. 58. № 4. С. 429‒437. https://doi.org/10.31857/S0016675822040105.
  19. Khan M.Y.A., Omar A.I., He Y. et al. Prevalence of nine genetic defects in Chinese Holstein cattle // Vet. Med. Sci. 2021. V. 7. № 5. P. 1728‒1735. https://doi.org/10.1002/vms3.525
  20. Bengtsson C., Stalhammar H., Thomasen J.R. et al. Mating allocations in Holstein combining genomic information and linear programming optimization at the herd level // J. Dairy Sci. 2023. V. 106. № 5. P. 3359‒3375. https://doi.org/10.3168/jds.2022-22926.
  21. Модоров М.В., Ткаченко И.В., Грин А.А. и др. Генетическая структура популяции голштинизированного черно-пестрого скота на территории Урала // Генетика. 2021. Т. 57. № 4. С. 437‒444. https://doi.org/10.31857/S001667582104010X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of capillary electrophoresis.

Download (173KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies