FADS gene polymorphism and the history of the formation of the indigenous populations of Siberia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The polymorphism of the rs174570, rs74771917, and rs7115739 FADS-gene loci in Siberian populations was studied. It was shown that the frequency of the rs174570-T variant marking haplotype A with a reduced level of fatty acid desaturase expression in the modern indigenous populations increases in the direction from the south to the north of Siberia. Similarly, an increase in the frequency of the TTT haplotype at the rs174570, rs74771917, and rs7115739 loci was observed in the northern direction. However, in ancient times, the populations of Eastern Siberia (its northeastern part, Baikal region, and Primorye) were characterized by an equally high frequency of the rs174570-T variant (over 80%). It was shown that the main influx of the rs174570-C allele (and the CCG haplotype) to northeast Siberia occurred relatively recently, over the past 300 years, as a result of mating contacts between indigenous populations and immigrant groups of predominantly eastern European origin. The gene flow intensity (for the rs174570-C allele) is estimated to be 1.5-4.4% per generation. The appearance of the rs174570-C variant in the population of the Baikal region has been registered since the Eneolithic epoch, which is apparently associated mainly with the advance of the Afanasievo culture tribes to the east of Siberia. Meanwhile, analysis of paleogenomic data showed that the TTT haplotype, with high frequency distributed in modern Eskimos and Amerindians, was present in the upper Paleolithic population of the Amur region, and therefore its carriers apparently took part in the formation of the ancient Beringian population.

Full Text

Restricted Access

About the authors

B. A. Malyarchuk

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: malyarchuk@ibpn.ru
Russian Federation, Magadan, 685000

M. V. Derenko

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: malyarchuk@ibpn.ru
Russian Federation, Magadan, 685000

G. A. Denisova

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: malyarchuk@ibpn.ru
Russian Federation, Magadan, 685000

A. N. Litvinov

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: malyarchuk@ibpn.ru
Russian Federation, Magadan, 685000

I. K. Dambueva

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: malyarchuk@ibpn.ru
Russian Federation, Magadan, 685000

References

  1. Ameur A., Enroth S., Johansson A. et al. Genetic adaptation of fatty-acid metabolism: A human specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids // Am. J. Hum. Genet. 2012. V. 90. P. 809–820. https://doi.org/10.1016/j.ajhg.2012.03.014
  2. Fumagalli M., Moltke I., Grarup N. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation // Science. 2015. V. 349. P. 1343–1347. https://doi.org/10.1126/science.aab2319
  3. Kothapalli K.S.D., Ye K., Gadgil M.S. et al. Positive selection on a regulatory insertion-deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid // Mol. Biol. Evol. 2016. V. 33. P. 1726–1739. https://doi.org/10.1093/molbev/msw049
  4. Amorim C.E., Nunes K., Meyer D. et al. Genetic signature of natural selection in first Americans // Proc. Natl Acad. Sci. USA. 2017. V. 114. P. 2195–2199. https://doi.org/10.1073/pnas.1620541114
  5. Harris D.H., Ruczinski I., Yanek L.R. et al. Evolution of hominin polyunsaturated fatty acid metabolism: from Africa to the New World // Genome Biol. Evol. 2019. V. 11. P. 1417–1430. https://doi.org/10.1093/gbe/evz071
  6. Малярчук Б.А., Деренко М.В., Денисова Г.А. Адаптивные изменения генов десатурации жирных кислот у коренного населения Северо-Востока Сибири // Генетика. 2021. Т. 57. № 12. С. 1458–1464. https://doi.org/10.31857/S0016675821120109
  7. Mathieson I. Limited evidence for selection at the FADS locus in Native American populations // Mol. Biol. Evol. 2020. V. 37. P. 2029–2033. https://doi.org/10.1093/molbev/msaa064
  8. Mathieson S., Mathieson I. FADS1 and the timing of human adaptation to agriculture // Mol. Biol. Evol. 2018. V. 35. P. 2957–2970. https://doi.org/10.1093/molbev/msy180
  9. Ye K., Gao F., Wang D. et al. Dietary adaptation of FADS genes in Europe varied across time and geography // Nat. Ecol. Evol. 2017. V. 1. https://doi.org/ 10.1038/s41559-017-0167
  10. Mathieson I., Lazaridis I., Rohland N. et al. Genome-wide patterns of selection in 230 ancient Eurasians // Nature. 2015. V. 528. P. 499–503. https://doi.org/10.1038/nature16152
  11. Mathieson I., Day F.R., Barban N. et al. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus // Nat. Hum. Behav. 2023. V. 7. P. 790–801. https://doi.org/10.1038/s41562-023-01528-6
  12. Voruganti V.S., Higgins P.B., Ebbesson S.O. et al. Variants in CPT1A, FADS1, and FADS2 are associated with higher levels of estimated plasma and erythrocyte Delta-5 desaturases in Alaskan Eskimos // Front. Genet. 2012. V. 3. P. 86. https://doi.org/10.3389/fgene.2012.00086.
  13. Hsieh P., Hallmark B., Watkins J. et al. Exome sequencing provides evidence of polygenic adaptation to a fat-rich animal diet in indigenous Siberian populations // Mol. Biol. Evol. 2017. V. 34. P. 2913–2926. https://doi.org/10.1093/molbev/msx226
  14. Малярчук Б.А., Деренко М.В. Полиморфизм генов метаболизма полиненасыщенных жирных кислот (FADS1 и FADS2) у коренного населения Сибири // Вестник Северо-Восточного научного центра ДВО РАН. 2018. № 3. С. 106–111.
  15. Untergasser A., Cutcutache I., Koressaar T. et al. Primer3 – new capabilities and interfaces // Nucl. Acids Research. 2012. V. 40. P. e115. https://doi.org/10.1093/nar/gks596
  16. Tamura K., Peterson D., Peterson N. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. 2011. V. 28. P. 2731–2739. https://doi.org/10.1093/molbev/msr121
  17. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  18. Cardona A., Pagani L., Antao T. et al. Genome-wide analysis of cold adaption in indigenous Siberian populations // PLoS One. 2014. V. 9. P. e98076. https://doi.org/10.1371/journal.pone.0098076
  19. Животовский Л.А. Генетика природных популяций. Йошкар-Ола: Типография «Вертикаль», 2021. 600 с.
  20. Zhou S., Xie P., Quoibion A. et al. Genetic architecture and adaptations of Nunavik Inuit // Proc. Natl. Acad. Sci. USA. 2019. V. 116. P. 16012–16017. https://doi.org/10.1073/pnas.181038811625.
  21. Sikora M., Pitulko V., Sousa V. et al. The population history of northeastern Siberia since the Pleistocene // Nature. 2019. V. 570. P. 182–188. https://doi.org/10.1038/s41586-019-1279-z
  22. Narasimhan V.M., Patterson N., Moorjani P. et al. The formation of human populations in South and Central Asia // Science. 2019. V. 365. https://doi.org/10.1126/science.aat7487
  23. Народы Северо-Востока Сибири. Под ред. Батьяновой Е.П., Тураева В.А.. М.: Наука, 2010. 773 с.
  24. Балановская Е.В., Богунов Ю.В., Богунова А.А. и др. Демографический портрет коряков севера Камчатки // Вестник Московского университета. Серия XXIII. Антропология. 2020. № 4. С. 111–122. https://doi.org/10.32521/2074-8132.2020.4.111-122
  25. Mao X., Zhang H., Qiao S. et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene // Cell. 2021. V. 184. P. 3256–3266.e13. https://doi.org/10.1016/j.cell.2021.04.040

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the rs174570-T variant in the Siberian population. The white circles on the map mark the reference points (the studied populations). The scale of the intervals of the polymorphism variant frequency values ​​(in %) is shown on the side.

Download (101KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies