The evolutionary pathways of Oxytropis species of the section Verticillares at the center of the section origin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Genetic diversity and phylogenetic relationships of Oxytropis species from the section Verticillares were studied based on nucleotide polymorphism of cpDNA intergenic spacers psbA-trnH, trnL-trnF, and trnS-trnG at the center of the section origin (Baikal Siberia and adjacent territories of South Siberia, Mongolia, and China). Moreover, at the first time the reconstruction of phylogenetic relationships of species from section Verticillares based on the analysis of ITS nrDNA has been performed. The paper summarizes new samples and new data for unstudied species and populations. 84.4% populations of 11 species are characterized by a high level of chloroplast haplotype diversity (h varies from 0.700 to 1.000). The majority of populations (71.9%) have high haplotype diversity with low nucleotide diversity. Three haplogroups revealed in the genealogical network of chlorotypes indicate that there are different evolutionary pathways of the species included in these groups: divergence of genetically isolated taxa in the zone of sympatry presumably on the base of ecological specialization; incomplete lineage sorting with preserving of ancestral polymorphism in combination with hybridization of weakly diversified taxa; allopatric divergence and polyploidization. Analysis of markers of chloroplast and nuclear genomes testify the rapid adaptive radiation of Oxytropis section Verticillares.

Full Text

Restricted Access

About the authors

A. B. Kholina

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: kholina@biosoil.ru
Russian Federation, Vladivostok, 690022

E. V. Artyukova

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: kholina@biosoil.ru
Russian Federation, Vladivostok, 690022

D. V. Sandanov

Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences

Email: kholina@biosoil.ru
Russian Federation, Ulan-Ude, 670047

References

  1. Zhu X., Welsh S. L., Ohashi H. Oxytropis // Flora of China. 2010. V. 10. P. 453–500. (http://www.efloras.org)
  2. Малышев Л. И. Фенетика подродов и секций остролодок (род Oxytropis DC., Fabaceae) в связи с экологией и филогенией // Сиб. экол. журн. 2008. № 4. С. 571–576. https://doi.org/10.1134/S1995425508040073
  3. Положий А.В. К вопросу о происхождении и эволюции рода Oxytropis (Fabaceae) // Бот. журн. 2003. Т. 88. № 10. С. 55–59.
  4. Shavvon R.S., Kazempour-Osaloo S., Maassoumi A. A. et al. Increasing phylogenetic support for explosively radiating taxa: The promise of high-throughput sequencing for Oxytropis (Fabaceae) // J. Syst. Evol. 2017. V. 55. № 4. P. 385–404. https://doi.org/10.1111/jse.12269
  5. Тулохонов А. К. Байкал: природа и люди. Энциклопедический справочник. Улан-Удэ: ЭКОС, 2009. С. 580.
  6. Намзалов Б. Б. Байкальский фитогеографический узел как новейший центр эндемизма Внутренней Азии // Сиб. экол. журн. 2009. Т. 16. № 4. С. 563–571. https://doi.org/10.1134/S1995425509040079
  7. Малышев Л.И., Пешкова Г. А. Особенности и генезис флоры Сибири (Предбайкалье и Забайкалье). Новосибирск: Наука, 1984. 364 с.
  8. Положий А. В. Флорогенетический анализ остролодочников Средней Сибири // Ученые записки ТГУ. Биология и почвоведение. 1965. № 51. С. 18–38.
  9. Юрцев Б. А. Основные пути эволюции остролодочников секции Baicalia Bge. // Бот. журн. 1964. Т. 49. № 5. С. 634–648.
  10. Малышев Л. И. Фенетика в секции Verticillares рода Oxytropis (Fabaceae) // Бот. журн. 2007. Т. 92. № 6. С. 793–807.
  11. Bunge Al. Species generis Oxytropis DC. // Mem. Acad. Sci. Petersb. (Sci. Phys. Math.). Ser. 7. 1874. T. 22. № 1. 166 p.
  12. Попов М. Г. Oxytropis DC. // Флора Средней Сибири. Т. 1. М.-Л.: Изд. АН СССР, 1957. С. 336–352.
  13. Малышев Л. И. Разнообразие рода Остролодка (Oxytropis) в Азиатской России // Turczaninowia. 2008 а. Т. 11. № 4. С. 5–141.
  14. Положий А. В. Oxytropis DC. // Флора Сибири. Новосибирск: Наука, 1994. Т. 9. С. 74–151.
  15. Улзийхутаг Н. Бобовые Монголии (таксономия, экология, география, филогения и хозяйственное значение). Улаанбаатар: Бемби Сан, 2003. 587 c.
  16. Санданов Д. В. Современные подходы к моделированию разнообразия и пространственному распределению видов растений: перспективы их применения в России // Вестн. ТГУ. Биология. 2019. № 46. С. 82–114. https://doi.org/10.17223/19988591/46/5
  17. Юрцев Б. А. Конспект системы секции Baicalia Bge рода Oxytropis DC. // Новости систематики высших растений. М.: Наука, 1964. С. 191–218
  18. Krivenko D.A., Kotseruba V. V., Kazanovsky S. G. et al. Fabaceae // IAPT/IOPB chromosome data 11 / Ed. Marhold K. // Taxon. 2011. V. 60. № 4. P. 1222.
  19. Konichenko E.S., Selyutina I. Yu., Dorogina O. V. Oxytropis triphylla // IAPT/IOPB chromosome data 14 / Ed. Marhold K. // Taxon. 2012. V. 61. № 6. P. 1338–1339.
  20. Gao J., Lu P., Wang J.-N. et al. Molecular phylogeny of several species of Oxytropis DC. based on 5.8S rDNA/ITS sequence // Acta Agric. Bor. Sin. 2009. V. 24. № 6. P. 168–173. https://doi.org/10.7668/hbnxb.2009.06.034
  21. Archambault A., Stromvik M. V. Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic // Botany. 2012. V. 90. № 8. P. 770–779. https://doi.org/10.1139/B2012–023
  22. Холина А.Б., Козыренко М. М., Артюкова Е. В. и др. Филогенетические взаимоотношения видов Oxytropis DC. subg. Oxytropis и Phacoxytropis (Fabaceae) Азиатской России на основе анализа нуклеотидных последовательностей межгенных спейсеров хлоропластного генома // Генетика. 2016. Т. 52. № 8. С. 895–909. https://doi.org/10.1134/S1022795416060065
  23. Холина А.Б., Козыренко М. М., Артюкова Е. В., Санданов Д. В. Дивергенция видов Oxytropis секции Verticillares (Fabaceae) степной флоры Байкальской Сибири на основе анализа хлоропластной ДНК // Генетика. 2019. Т. 55. № 6. С. 665–674. https://doi.org/10.1134/S0016675819060055
  24. Холина А.Б., Позднякова Т. Э., Санданов Д. В. Состояние популяций ценных лекарственных видов рода Oxytropis Байкальской Сибири по данным хлоропластной ДНК // Изв. СПбГАУ. 2022. № 3 (68). С. 20–31. https://doi.org/10.24412/2078-1318-2022-3-20-31
  25. Холина А.Б., Козыренко М. М., Артюкова Е. В., Позднякова Т. Э. Изменчивость хлоропластной ДНК видов Oxytropis секции Polyadena (Fabaceae) Азиатской России: популяционный анализ и филогенетические связи // Изв. РАН. Сер. биол. 2021. № 1. С. 19–29. https://doi.org/10.1134/S1062359021010076
  26. Холина А.Б., Козыренко М. М., Артюкова Е. В. и др. Филогенетические связи видов Азиатской России подродов Phacoxytropis и Tragacanthoxytropis рода Oxytropis на основе полиморфизма маркеров хлоропластного и ядерного геномов // Генетика. 2021. Т. 57. № 9. С. 1039–1053. https://doi.org/10.31857/S0016675821090058
  27. Kholina A., Kozyrenko M., Artyukova E. et al. Phylogenetic relationships of Oxytropis section Gloeocephala from Northeast Asia based on sequencing of the intergenic spacers of cpDNA and ITS nrDNA // Genetica. 2022. V. 150. P. 117–128. https://doi.org/10.1007/s10709-022-00152-y
  28. Mir B.A., Koul S., Kumar A. et al. Intraspecific variation in the internal transcribed spacer (ITS) regions of rDNA in Withania somnifera (Linn.) Dunal // Indian J. Biotechnol. 2010. V. 9. P. 325–328.
  29. Bonfeld J.K., Smith K. F., Staden R. A new DNA sequence assembly program // Nucl. Acids Res. 1995. V. 23. P. 4992–4999.
  30. Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building // Mol. Biol. Evol. 2010. V. 27. P. 221–224. https://doi.org/10.1093/molbev/msp259
  31. Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. V. 25. № 11. P. 1451–1452.
  32. Excoffier L., Lischer H. E.L. Arlequin suite v3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567.
  33. Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48.
  34. Холина А.Б., Козыренко М. М., Артюкова Е. В., Санданов Д. В. Современное состояние популяций эндемичных видов Oxytropis Байкальской Сибири и их филогенетические связи по данным секвенирования маркеров хлоропластной ДНК // Генетика. 2018. Т. 54. № 7. С. 795–806. https://doi.org/10.1134/S1022795418070050
  35. Kholina A., Kozyrenko M., Artyukova E. et al. Genetic diversity of Oxytropis section Xerobia (Fabaceae) in one of the centres of speciation // Genetica. 2021. V. 149. № 2. P. 89–101. https://doi.org/10.1007/s10709-021-00115-9
  36. Guo C., Zhang L., Zhao Q. et al. Host-species variation and environment influence endophyte symbiosis and mycotoxin levels in Chinese Oxytropis species // Toxins. 2022. V. 14. https://doi.org/10.3390/toxins14030181
  37. Wojciechowski M. F. Astragalus (Fabaceae): A molecular phylogenetic perspective // Brittonia. 2005. V. 57. P. 382–396.
  38. Sandanov D.V., Kholina A. B., Kozyrenko M. M. et al. Genetic diversity of Oxytropis species from the center of the genus origin: insight from molecular studies // Diversity. 2023. V. 15. https://doi.org/10.3390/d15020244
  39. Wang H., Liu P.-L., Li J. et al. Why more leaflets? The role of natural selection in shaping the spatial pattern of leaf-shape variation in Oxytropis diversifolia (Fabaceae) and two close relatives // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.681962
  40. Avise J. C. Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard Univ. Press, 2000. 441 p.
  41. Абрамсон Н. И. Филогеография: итоги, проблемы, перспективы // Инф. Вест. ВОГиС. 2007. Т. 11. № 2. С. 307–331.
  42. Moore A.J., Merges D., Kadereit J. W. The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion // Mol. Ecol. 2013. V. 22. P. 2218–2231. https://doi.org/10.1111/mec.12266
  43. Cortés A.J., Garzón L. N., Valencia Jh.B., Madriñán S. On the causes of rapid diversification in the Páramos: isolation by ecology and genomic divergence in Espeletia // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.01700
  44. Jones M.R., Winkler D. E., Massatti R. The demographic and ecological factors shaping diversification among rare Astragalus species // Divers. Distrib. 2021. P. 1–15. https://doi.org/10.1111/ddi.13288
  45. Sampson J., Byrne M. Genetic differentiation among subspecies of Banksia nivea (Proteaceae) associated with expansion and habitat specialization // Diversity. 2022. V. 14. https://doi.org/10.3390/d14020098
  46. Yang Zh., Ma W.-X., He X. et al. Species divergence and phylogeography of Corylus heterophylla Fisch complex (Betulaceae): inferred from molecular, climatic and morphological data // Mol. Phylogenet. Evol. 2022. V. 168. https://doi.org/10.1016/j.ympev.2022.107413
  47. Özüdoğru B., Karacaoğlu Ç., Akaydın G. et al. Ecological specialization promotes diversity and diversification in the Eastern Mediterranean genus Ricotia (Brassicaceae) // J. Syst. Evol. 2022. V. 60. P. 331–343. https://doi.org/10.1101/2020.08.30.274670
  48. Юрцев Б. А. Oxytropis DC. // Арктическая флора СССР. Л.: Наука, 1986. Вып. 9. Ч. 2. С. 61–146.
  49. Холина А.Б., Козыренко М. М., Артюкова Е. В. и др. Филогенетические отношения видов Oxytropis секции Arctobia северо-востока Азии по данным секвенирования межгенных спейсеров хлоропластного и ITS ядерного геномов // Генетика. 2020. Т. 56. № 12. С. 1386–1397. https://doi.org/10.1134/S1022795420120091
  50. Lopez-Vinyallonga S., Lopez-Pujol J., Constantinidis Th. et al. Mountains and refuges: Genetic structure and evolutionary history in closely related, endemic Centaurea in continental Greece // Mol. Phylogenet. Evol. 2015. V. 92. P. 243–254. https://doi.org/10.1016/j.ympev.2015.06.018
  51. Feng L., Zheng Q.-J., Qian Z.-Q. et al. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions // Front. Plant Sci. 2016. V. 7. https://doi.org/10.3389/fpls.2016.01688
  52. Khan G., Zhang F., Gao Q. et al. Spiroides shrubs on Qinghai-Tibetan Plateau: Multilocus phylogeography and palaeodistributional reconstruction of Spiraea alpina and S. mongolica (Rosaceae) // Mol. Phylogenet. Evol. 2018. V. 123. P. 137–148. https://doi.org/10.1016/j.ympev.2018.02.009
  53. Mahmoudi Shamsabad M., Assadi M., Parducci L. Phylogeography and population genetics of Acanthophyllum squarrosum complex (Caryophyllaceae) in the Irano-Turanian region // Syst. Biodivers. 2019. V. 17. № 4. P. 412–421. https://doi.org/10.1080/14772000.2019.1590476
  54. Schanzer I.A., Fedorova A.V., Shelepova O. V., Suleymanova G.F. Molecular phylogeny and phylogeography of Potentilla multifida L. agg. (Rosaceae) in Northern Eurasia with special focus on two rare and critically endangered endemic species, P. volgarica and P. eversmanniana // Plants. 2020. V. 9. https://doi.org/10.3390/plants9121798
  55. Li Y., Wang L., Zhang X. et al. Extensive sharing of chloroplast haplotypes among East Asian Cerris oaks: The imprints of shared ancestral polymorphism and introgression // Ecol. Evol. 2022. V. 12. https://doi.org/10.1002/ece3.9142
  56. Sandanov D.V., Dugarova A. S., Brianskaia E. P. et al. Diversity and distribution of Oxytropis DC. (Fabaceae) species in Asian Russia // Biodivers. Data J. 2022. V. 10. https://doi.org/10.3897/BDJ.10.e78666
  57. Намзалов Б.Б. Важнейшие узлы биоразнообразия и фитогеографические феномены горных степей Южной Сибири // Аридные экосистемы. 2021. Т. 27. № 3 (88). С. 24–36. doi: 10.1134/S2079096121030100
  58. Drummond C.S., Eastwood R.J., Miotto S.T.S., Hughes C.E. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling // Syst. Biol. 2012. V. 61 (3). P. 443–460. https://doi.org/10.1093/sysbio/syr126
  59. Bagheri A., Maassoumi A. A., Rahiminejad M. R. et al. Molecular phylogeny and divergence times of Astragalus section Hymenostegis: An analysis of a rapidly diversifying species group in Fabaceae // Sci. Rep. 2017. № 7. https://doi.org/10.1038/s41598-017-14614-3
  60. Shepherd L.D., Heenan P. B. Evidence for both long-distance dispersal and isolation in the Southern Oceans: Molecular phylogeny of Sophora sect Edwardsia (Fabaceae) // N. Z. J. Bot. 2017. V. 55. № 3. P. 334–346. https://doi.org/10.1080/0028825X.2017.1353527
  61. Zhao X.L., Gao X. F., Zhu Zh.M. et al. The demographic response of a deciduous shrub (the Indigofera bungeana complex, Fabaceae) to the Pleistocene climate changes in East Asia // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/s41598-017-00613-x
  62. Козыренко М.М., Холина А.Б., Артюкова Е.В. и др. Молекулярно-филогенетическая характеристика эндемичных дальневосточных близкородственных видов секции Orobia рода Oxytropis (Fabaceae) // Генетика. 2020. Т. 56. № 4. С. 421–432. https://doi.org/10.1134/S1022795420040043
  63. Hou B., Luo J., Zhang Y. et al. Iteration expansion and regional evolution: Phylogeography of Dendrobium officinale and four related taxa in southern China // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/srep43525
  64. Zheng H.-Y., Guo X.-L., Price M. et al. Effects of mountain uplift and climatic oscillations on phylogeography and species divergence of Chamaesium (Apiaceae) // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.673200
  65. Zhang S.Z., Ma Y. C., Li M. X. Cytotaxonomical studies on 14 species of Oxytropis DC. from Neimenggu // Acta Sci. Nat. Univ. Neimenggu. 1994. V. 25. P. 64–72.
  66. Sandanov D.V., Dugarova A. S., Brianskaia E. P. et al. Diversity and distribution of Oxytropis DC. (Fabaceae) species in Asian Russia // Biodivers. Data J. 2022. V. 10. https://doi.org/10.3897/BDJ.10.e78666

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map indicating the collection sites of Oxytropis species of the Verticillares section from 45 natural habitats. See Table 1 for population codes. The ranges of the studied species are given in [66].

Download (403KB)
3. Fig. 2. Genealogical relationships of haplotypes of Oxytropis species of the Verticillares section constructed using the MJ method: a – genealogical network of cpDNA chlorotypes (H1–H55); b – genealogical network of ITS rDNA ribotypes (RH1–RH17). The size of the circles reflects the frequency of chloro- and ribotypes, small black circles are hypothetical chloro- and ribotypes, transverse thin intersecting lines on the branches are mutational events, thick black intersecting lines are indels. The dotted line divides the chlorotype network into haplogroups I, II, III. Mutations for O. glabra, used as an outgroup, are not indicated and are not considered.

Download (737KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies