Variations in Chromosome Synapsis at Meiotic Prophase I of Mole Voles Ellobius tancrei Heterozygous for Robertsonian Translocations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have shown that different combinations of meiotic configurations (different number of trivalents and different chromosome chain structure) in the same individual can be formed in heterozygotes with the Robertsonian translocations in the meiotic prophase I. Two types of experimental hybrids of the eastern mole vole Ellobius tancrei which are heterozygous for four Robertsonian translocations were studied here. Instead of the expected four trivalents, different types of meiotic configurations at the pachytena stage up to 10-element chains were identified. We suggest that the probability of passing meiosis in different cells depends on the structure of the formed chains and possibility of their correction. Such variations in chromosome synapsis during multivalent formation may lead to a decrease in gametes production but not to a complete stop of gametogenesis, which provides the background for the maintenance of Robertsonian translocations in the population.

About the authors

S. N. Matveevsky

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: sergey8585@mail.ru
Russia, 119991, Moscow

Yu. F. Bogdanov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: olkolomiets@mail.ru
Russia, 119991, Moscow

E. A. Lyapunova

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: olkolomiets@mail.ru
Russia, 119334, Moscow

I. Yu. Bakloushinskaya

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: olkolomiets@mail.ru
Russia, 119334, Moscow

O. L. Kolomiets

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: olkolomiets@mail.ru
Russia, 119991, Moscow

References

  1. Robertson W.M.R.B. Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettegidae and Acrididiae: V-shaped chromosomes and their significance in Acrididae, Locustidae and Grillidae: Chromosomes and variations // J. of Morphology. 1916. V. 27. P. 179–331.
  2. Baccetti B., Capitani S., Collodel G. et al. Infertile spermatozoa in a human carrier of Robertsonian translocation 14;22 // Fertility and Sterility. 2002. V. 78. № 5. P. 1127–1130. https://doi.org/10.1016/S0015-0282(02)03379-4
  3. Mack H., Swisshelm K. Robertsonian translocations // Brenner’s Encyclopedia of Genetics. 2013. V. 6. P. 301–305. https://doi.org/10.1016/B978-0-12-374984-0.01357-7
  4. Wilch E.S., Morton C.C. Historical and clinical perspectives on chromosomal translocations // Chromosome Translocation. Advances in Experimental Medicine and Biology. Singapore: Springer, 2018. P. 1–14. https://doi.org/10.1007/978-981-13-0593-1_1
  5. King M. Species Evolution: The Role of Chromosome Change. Cambridge: Cambridge Univ. Press, 1993. 336 p.
  6. Narain Y., Fredga K. Spermatogenesis in common shrews Sorex araneus from a hybrid one with extensive Robertsonian polymorphism // Cytogenetic and Cell Genetics. 1998. V. 80. P. 158–164. https://doi.org/10.1159/000014973
  7. Jadwiszczak K.A., Banaszek A. Fertility in the male common shrews Sorex araneus from the extremely narrow hybrid zone between chromosome races // Mammalian Biol. 2006. V. 71. № 5. P. 257–267. https://doi.org/10.1016/j.mambio.2006.02.004
  8. Johannisson R., Winking H. Synaptonemal complexes of chains and rings in mice heterozygous for multiple Robertsonian translocations // Chromosome Res. 1994. V. 2. P. 137–145. https://doi.org/10.1007/BF01553492
  9. Ribagorda M., Berríos S., Solano E. et al. Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics // Chromosoma. 2019. V. 128. P. 149–163. https://doi.org/10.1007/s00412-019-00695-8
  10. Dutrillaux B., Rumpler Y. Chromosomal evolution in Malagasy lemurs. // Cytogenetic and Cell Genetics. 1977. V. 18. № 4. P. 197–211. https://doi.org/10.1159/000130763
  11. Matveevsky S., Bakloushinskaya I., Tambovtseva V. et al. Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): A case of monobrachial homology // Comparative Cytogenetics. 2015. V. 9. № 4. P. 691–697. https://doi.org/10.3897/CompCytogen.v9i4.5674
  12. Potter S., Bragg J.G., Turakulov R. et al. Limited introgression between rock-wallabies with extensive chromosomal rearrangements // Mol. Biol. and Evol. 2022. V. 39. № 1. https://doi.org/10.1093/molbev/msab333
  13. Moses M.J., Poorman P.A. Synaptonemal complex analysis of mouse chromosomal rearrangements: II. Synaptic adjustment in a tandem duplication // Chromosoma. 1981. V. 81. № 4. P. 519–535. https://doi.org/10.1007/BF00285847
  14. Коломиец О.Л., Ляпунова Е.А., Мазурова Т.Ф. и др. Различные пути формирования тривалентов СК у гибридов гетерозиготных по Rb-транслокациям // Молекулярные механизмы генетических процессов: молекулярная генетика, эволюция и молекулярно-генетические основы селекции. М.: Наука, 1985. С. 72–84.
  15. Fawcett D.W. The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes // J. of Cell Biol. 1956. V. 2. № 4. P. 403–406. https://doi.org/10.1083/jcb.2.4.403
  16. Moses M.J. Chromosomal structures in crayfish spermatocytes // J. of Biophys. and Biochem. Cytology. 1956. V. 2. № 2. https://doi.org/10.1083/jcb.2.2.215
  17. Lyapunova E.A., Vorontsov N.N., Korobitsina K.V. et al. A Robertsonian fan in Ellobius talpinus // Genetica. 1980. V. 52/53. P. 239–247. https://doi.org/10.1007/BF00121833
  18. Romanenko S.A., Lyapunova E.A., Saidov A.S. et al. Chromosome translocations as a driver of diversification in mole voles Ellobius (Rodentia, Mammalia) // Int. J. Mol. Sci. 2019. V. 20. № 18. https://doi.org/10.3390/ijms20184466
  19. Vorontsov N.N. The evolution of the sex chromosomes // Cytotaxonomy and Vertebrate Evolution N. Y.: Acad. Press, 1973. P. 619–657.
  20. Navarro J., Vidal F., Guitart M., Egozcue J. A method for the sequential study of synaptonemal complexes by light and electron microscopy // Hum. Genet. 1981. V. 59. P. 419–421. https://doi.org/10.1007/BF00295483
  21. Sharp P.J. Synaptic adjustment at a C-band heterozygosity // Cytogenetic and Genome Res. 1986. V. 41. № 1. P. 56–57.
  22. Коломиец О.Л., Ляпунова Е.А., Мазурова Т.Ф. и др. Участие гетерохроматина в формировании цепочек синаптонемных комплексов у животных, гетерозиготных по множественным робертсоновским транслокациям // Генетика. 1986. Т. 22. № 2. С. 273–280.
  23. Bogdanov Y.F., Kolomiets O.L., Lyapunova E.A. et al. Synaptonemal complexes and chromosome chains in the rodent Ellobius talpinus heterozygous for ten Robertsonian translocations // Chromosoma. 1986. V. 94. P. 94–102. https://doi.org/10.1007/BF00286986
  24. Matveevsky S., Tretiakov A., Kashintsova A. et al. Meiotic nuclear architecture in distinct mole vole hybrids with Robertsonian translocations: Chromosome chains, stretched centromeres, and distorted recombination // Int. J. Mol. Sci. 2020. V. 21. № 20. https://doi.org/10.3390/ijms21207630
  25. Matveevsky S., Bakloushinskaya I., Tambovtseva V. et al. Nonhomologous chromosome interactions in prophase I: Dynamics of bizarre meiotic contacts in the Alay mole vole Ellobius alaicus (Mammalia, Rodentia) // Genes. 2022. V. 13. № 12. https://doi.org/10.3390/genes13122196
  26. Kolomiets O., Bakloushinskaya I., Pankin M. et al. Irregularities in meiotic prophase I as prerequisites for reproductive isolation in experimental hybrids carrying Robertsonian translocations // Diversity. 2023. V. 15. № 3. https://doi.org/10.3390/d15030364
  27. Manterola M., Page J., Vasco C. et al. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple Robertsonian translocations // PLoS Genetics. 2009. V. 5. № 8. https://doi.org/10.1371/journal.pgen.1000625
  28. Roeder G.S. Meiotic chromosomes: It takes two to tango // Genes & Development. 1997. V. 11. № 20. P. 2600–2621. https://doi.org/10.1101/gad.11.20.2600
  29. Roeder G.S., Bailis J.M. The pachytene checkpoint // Trends in Genetics. 2000. V. 16. № 9. P. 395–403. https://doi.org/10.1016/S0168-9525(00)02080-1
  30. Bazykin A.D. Hypothetical mechanism of speciation // Evolution. 1969. V. 23. № 4. P. 684–687. https://doi.org/10.2307/2406862
  31. Feder J.L., Egan S.P., Nosil P. The genomics of speciation-with-gene-flow // Trends in Genetics. 2012. V. 28. № 7. P. 342–350. https://doi.org/10.1016/j.tig.2012.03.009
  32. Gimenez M.D., White T.A., Hauffe H.C. et al. Understanding the basis of diminished gene flow between hybridizing chromosome races of the house mouse // Evolution. 2013. V. 67. № 5. P. 1446–1462. https://doi.org/10.1111/evo.12054
  33. Tigano A., Khan R., Omer A.D. et al. Chromosome size affects sequence divergence between species through the interplay of recombination and selection // Evolution. 2022. V. 76. № 4. P. 782–798. https://doi.org/10.1111/evo.14467

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)

Copyright (c) 2023 С.Н. Матвеевский, Ю.Ф. Богданов, Е.А. Ляпунова, И.Ю. Баклушинская, О.Л. Коломиец

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies