Methylation of the Retrotransposon LINE-1 Subfamilies in Chorionic Villi of Miscarriages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Miscarriage is potentially associated with abnormal epigenetic regulation of genes responsible for the development of the embryo and placenta. The aim of this work was to analyze the methylation level of various subfamilies of the LINE-1 retrotransposon, which makes up about 17% of the entire genome, in chorionic villi of spontaneous abortions of the first trimester of pregnancy with different karyotypes, including the most common aneuploidies. The methylation profile in the LINE-1 retrotransposon promoter was analyzed using targeted bisulfite massive parallel sequencing in chorionic villi of induced abortions (n = 39), spontaneous abortions with normal karyotype (n = 173), trisomy 16 (n = 62) and monosomy X (n = 46), and peripheral blood lymphocytes of healthy volunteers (n = 17). The level of methylation of the LINE-1 retrotransposon subfamilies in the control groups of adult lymphocytes and chorionic villi of induced abortions was the highest for evolutionarily young L1HS subfamilies, lower for the more ancient L1PA2 and L1PA3 subfamilies, and the lowest for the even more ancient L1PA4 subfamily. In the groups of spontaneous abortions, an increased level of LINE-1 methylation was observed, and this effect was more pronounced for the older LINE-1 subfamilies. The revealed patterns indicate less control over the older subfamilies of the LINE-1 retrotransposon in the human genome, which can potentially be used as regulatory elements for nearby genes involved in embryonic development. An increase in the level of methylation of such sequences can disrupt the development of the placenta and embryo and make a certain contribution to miscarriage.

About the authors

S. A. Vasilyev

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Author for correspondence.
Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

T. V. Nikitina

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

E. A. Sazhenova

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

I. V. Lushnikov

National Research Tomsk State University

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

O. Yu. Vasilyeva

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

A. S. Ushakova

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences; National Research Tomsk State University

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

A. S. Zuev

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

S. A. Filatova

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences; National Research Tomsk State University

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk; Russia, 634050, Tomsk

E. N. Tolmacheva

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

V. V. Demeneva

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

I. N. Lebedev

Research Institute of Medical Genetics, Tomsk National Research Medical Center
of Russian Academy of Sciences

Email: stanislav.vasilyev@medgenetics.ru
Russia, 634050, Tomsk

References

  1. Quenby S., Gallos I.D., Dhillon-Smith R.K. et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss // Lancet. 2021. V. 397. № 10285. P. 1658–1667. https://doi.org/10.1016/S0140-6736(21)00682-6
  2. Li T.C., Makris M., Tomsu M. et al. Recurrent miscarriage: aetiology, management and prognosis // Hum. Reprod. Update. 2002. V. 8. № 5. P. 463–481. https://doi.org/10.1093/humupd/8.5.463
  3. Red-Horse K., Zhou Y., Genbacev O. et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface // J. Clin. Invest. 2004. V. 114. № 6. P. 744–754. https://doi.org/10.1172/JCI22991
  4. Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution // Hum. Reprod. Update. 2006. V. 12. № 6. P. 747–755. https://doi.org/:dml016
  5. Shridhar V., Chu T., Simhan H. et al. High-resolution analysis of the human placental DNA methylome in early gestation // Prenat. Diagn. 2020. V. 40. № 4. P. 481–491. https://doi.org/10.1002/pd.5618
  6. Robinson W.P., Price E.M. The human placental methylome // Cold Spring Harbor Perspect. Med. 2015. V. 5. № 5. https://doi.org/10.1101/cshperspect.a023044
  7. Vlahos A., Mansell T., Saffery R. et al. Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome // PLoS Genet. 2019. V. 15. № 8. https://doi.org/10.1371/journal.pgen.1008236
  8. Etchegaray E., Naville M., Volff J.N. et al. Transposable element-derived sequences in vertebrate development // Mob. DNA. 2021. V. 12. № 1. P. 1. https://doi.org/10.1186/s13100-020-00229-5
  9. Grow E.J., Flynn R.A., Chavez S.L. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells // Nature. 2015. V. 522. № 7555. P. 221–225. https://doi.org/10.1038/nature14308
  10. Reiss D., Zhang Y., Mager D.L. Widely variable endogenous retroviral methylation levels in human placenta // Nucl. Ac. Res. 2007. V. 35. № 14. P. 4743–4754. https://doi.org/10.1093/nar/gkm455
  11. Lee J., Cordaux R., Han K. et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons // Gene. 2007. V. 390. № 1–2. P. 18–27. https://doi.org/10.1016/j.gene.2006.08.029
  12. Khan H., Smit A., Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates // Genome Res. 2006. V. 16. № 1. P. 78–87. https://doi.org/10.1101/gr.4001406
  13. Boissinot S., Sookdeo A. The Evolution of LINE-1 in Vertebrates // Genome Biol. Evol. 2016. V. 8. № 12. P. 3485–3507. https://doi.org/10.1093/gbe/evw247
  14. Vasilyev S.A., Tolmacheva E.N., Vasilyeva O.Y. et al. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy // J. Assist. Reprod. Genet. 2021. V. 38. № 1. P. 139–149. https://doi.org/10.1007/s10815-020-02003-1
  15. Lebedev I.N., Ostroverkhova N.V., Nikitina T.V. et al. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis // Eur. J. Hum. Genet. 2004. V. 12. № 7. P. 513–520. https://doi.org/10.1038/sj.ejhg.5201178
  16. Vasilyev S.A., Timoshevsky V.A., Lebedev I.N. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239 // Russ. J. Genetics. 2010. V. 46. № 11. P. 1381–1385. https://doi.org/10.1134/s1022795410110141
  17. Vasilyev S.A., Markov A.V., Vasilyeva O.Y. et al. Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter // MethodsX. 2021. V. 8. https://doi.org/10.1016/j.mex.2021.101445
  18. Fernandes J.D., Zamudio-Hurtado A., Clawson H. et al. The UCSC repeat browser allows discovery and visualization of evolutionary conflict across repeat families // Mob. DNA. 2020. V. 11. P. 13. https://doi.org/10.1186/s13100-020-00208-w
  19. Zheng Y., Joyce B.T., Liu L. et al. Prediction of genome-wide DNA methylation in repetitive elements // Nucl. Ac. Res. 2017. V. 45. № 15. P. 8697–8711. https://doi.org/10.1093/nar/gkx587
  20. Zadora J., Singh M., Herse F. et al. Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker // Circulation. 2017. V. 136. № 19. P. 1824–1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110
  21. Criscione S.W., Theodosakis N., Micevic G. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts // BMC Genomics. 2016. V. 17. P. 463. https://doi.org/10.1186/s12864-016-2800-5
  22. Chishima T., Iwakiri J., Hamada M. Identification of transposable elements contributing to tissue-specific expression of long non-coding RNAs // Genes (Basel). 2018. V. 9. № 1. https://doi.org/10.3390/genes9010023
  23. Pourrajab F., Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials) // Heliyon. 2021. V. 7. № 1. https://doi.org/10.1016/j.heliyon.2021.e06029
  24. Demeneva V.V., Tolmacheva E.N., Nikitina T.V. et al. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy // Vavil. Zh. Genet. Selektsii. 2023. V. 27. № 1. P. 63–71. https://doi.org/10.18699/VJGB-23-09

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (338KB)
4.

Download (125KB)
5.

Download (183KB)

Copyright (c) 2023 С.А. Васильев, В.В. Деменева, Е.Н. Толмачева, С.А. Филатова, А.С. Зуев, А.С. Ушакова, О.Ю. Васильева, И.В. Лушников, Е.А. Саженова, Т.В. Никитина, И.Н. Лебедев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies