Biological Diversity of Genes Encoding Wheat Defensin Homologues

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Antimicrobial peptides (AMPs) are major components of innate immunity in plants and animals. AMP genes have significant intra- and interspecific polymorphism, the role of which is poorly understood. Previously, by high throughput transcriptome sequencing of wheat plants, we identified defensin genes up-regulated upon infection with the pathogenic fungus Fusarium oxysporum and/or treatment with resistance inducers. In the present work, a bioinformatic search in NCBI databases for peptide homologues of these defensins was carried out using the sequences of their γ-cores, the sites of the molecules responsible for antimicrobial activity. DEFL1-16 homologues were identified in 95 species of angiosperms belonging to 48 families and 30 orders of monocotyledonous and dicotyledonous plants. The ubiquitous distribution of this defensin in angiosperms suggests its involvement not only in defense, but also in other processes in flowering plants. Homologues of other defensins induced by infection were found only in plants of the Poaceae family, which suggests the existence of a Poaceae-specific defense mechanism associated with the expression of these defensins. Among the γ-core variants of wild plant defensins identified in the study, the peptides with better antimicrobial activity compared to wheat, might be present, which are of considerable interest for the development of new antibiotics for medicine and agriculture.

About the authors

M. P. Slezina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: odintsova2005@rambler.ru
Russia, 119991, Moscow

E. A. Istomina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: odintsova2005@rambler.ru
Russia, 119991, Moscow

T. I. Odintsova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: odintsova2005@rambler.ru
Russia, 119991, Moscow

References

  1. Zasloff M. Antimicrobial peptides of multicellular organisms // Nature. 2002. № 415. P. 389–395. https://doi.org/10.1038/415389a
  2. Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants // Pharmaceuticals. 2015. V. 8. № 4. P. 711–757. https://doi.org/10.3390/ph8040711
  3. Li J., Hu S., Jian W. et al. Plant antimicrobial peptides: structures, functions, and applications // Bot. Stud. 2021. V. 62. № 1. https://doi.org/10.1186/s40529-021-00312-x
  4. Lima A.M., Azevedo M.I.G., Sousa L.M. et al. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications // Int. J. Biol. Macromol. 2022. V. 214. P. 10−21. https://doi.org/10.1016/j.ijbiomac.2022.06.043
  5. Zou F., Tan C., Shinali T.S. et al. Plant antimicrobial peptides: A comprehensive review of their classification, production, mode of action, functions, applications, and challenges // Food Funct. 2023. V. 14. № 12. P. 5492−5515. https://doi.org/10.1039/d3fo01119d
  6. Lazzaro B.P., Zasloff M., Rolff J. Antimicrobial peptides: Application informed by evolution // Science. 2020. V. 368. № 6490. https://doi.org/10.1126/science.aau5480
  7. Zhu Y., Hao W., Wang X. et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections // Med. Res. Rev. 2022. V. 42. № 4. P. 1377–1422. https://doi.org/10.1002/med.21879
  8. Yount N.Y., Yeaman M.R. Multidimensional signatures in antimicrobial peptides // Proc. Natl Acad. Sci. USA. 2004. V. 101. № 19. P. 7363–7368. https://doi.org/10.1073/pnas.0401567101
  9. Odintsova T.I., Slezina M.P., Istomina E.A. et al. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance // PeerJ. 2019. V. 7. https://doi.org/10.7717/peerj.6125
  10. Slezina M.P., Istomina E.A., Kulakovskaya E.V. et al. The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens // Int. J. Mol. Sci. 2022. V. 23. № 15. https://doi.org/10.3390/ijms23158383
  11. https://blast.ncbi.nlm.nih.gov/Blast.cgi
  12. Bendtsen J.D., Nielsen H., von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0 // J. Mol. Biol. 2004. V. 340. № 4. P. 783–795. https://doi.org/10.1016/j.jmb.2004.05.028
  13. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. № 7. P. 1870−1874. https://doi.org/10.1093/molbev/msw054
  14. The Angiosperm Phylogeny Group, Chase M.W., Christenhusz M.J.M. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV // Bot. J. Linn. Soc. 2016. V. 181. № 1. P. 1−20. https://doi.org/10.1111/boj.12385
  15. Вехов В.Н. Зостера морская Белого моря. М.: МГУ, 1992. 144 с.
  16. Жизнь растений. Т. 5. Ч. 2. Цветковые растения / Под ред. Тахтаджяна А.Л. М.: Просвещение, 1981. 511 с.
  17. Попов А.П. Лекарственные растения в народной медицине. Киев: Здоров'я, 1967. 316 с.
  18. Усенко Н.В. Деревья, кустарники и лианы Дальнего Востока. Хабаровск: Хабаровское кн. изд-во, 1984. С. 110−111.
  19. Li P.-H., Shih Y.-J., Lu W.-C. et al. Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts // Arab. J. Chem. 2023. V. 16. № 7. 104873. https://doi.org/10.1016/j.arabjc.2023.104873
  20. Endress P.K. Trochodendraceae // Flowering Plants Dicotyledons. The Families and Genera of Vascular Plants. V. 2. Berlin; Heidelberg: Springer, 1993. P. 599−602. https://doi.org/10.1007/978-3-662-02899-5_74
  21. Sun Y., Deng T., Zhang A. et al. Genome sequencing of the endangered Kingdonia uniflora (Circaeasteraceae, Ranunculales) reveals potential mechanisms of evolutionary specialization // iScience. 2020. V. 23. № 5. https://doi.org/10.1016/j.isci.2020.101124
  22. Li C., Duan C., Zhang H. et al. Adaptative mechanisms of halophytic Eutrema salsugineum encountering saline environment // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.909527
  23. Dupin S.E., Geurts R., Kiers E.T. The non-legume Parasponia andersonii mediates the fitness of nitrogen-fixing rhizobial symbionts under high nitrogen conditions // Front. Plant Sci. 2020. V. 10. https://doi.org/10.3389/fpls.2019.01779
  24. Clarke C.R., Timko M.P., Yoder J.I. et al. Molecular dialog between parasitic plants and their hosts // Annu. Rev. Phytopathol. 2019. V. 57. P. 279–299. https://doi.org/10.1146/annurev-phyto-082718-100043
  25. Conran J.G. Cephalotaceae // Flowering Plants Dicotyledons. The Families and Genera of Vascular Plants. Berlin; Heidelberg: Springer, 2004. V. 6. P. 65–68. https://doi.org/10.1007/978-3-662-07257-8_7
  26. Жизнь растений. Т. 6. Цветковые растения / Под ред. Тахтаджяна А.Л. М.: Просвещение, 1982. 543 с.
  27. Li C.J., Tsang S.F., Tsai C.H. et al. Momordica charantia extract induces apoptosis in human cancer cells through caspase- and mitochondria-dependent pathways // Evid. Based Complement. Alternat. Med. 2012. V. 2012. https://doi.org/10.1155/2012/261971
  28. Zhang J., Hunto S.T., Yang Y. et al. Tabebuia impetiginosa: A comprehensive review on traditional uses, phytochemistry, and immunopharmacological properties // Molecules. 2020. V. 25. № 18. https://doi.org/10.3390/molecules25184294
  29. Huang W., Zhang L., Columbus J.T. et al. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis // Mol. Plant. 2022. V. 15. № 4. P. 755–777. https://doi.org/10.1016/j.molp.2022.01.015
  30. Slezina M.P., Istomina E.A., Kulakovskaya E.V. et al. Synthetic oligopeptides mimicking γ-core regions of cysteine-rich peptides of Solanum lycopersicum possess antimicrobial activity against human and plant pathogens // Curr. Issues Mol. Biol. 2021. V. 43. № 3. P. 1226−1242. https://doi.org/10.3390/cimb43030087
  31. Slezina M.P., Istomina E.A., Korostyleva T.V. et al. Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling // Int. J. Mol. Sci. 2021. V. 22. № 11. https://doi.org/10.3390/ijms22115741
  32. Stotz H.U., Spence B., Wang Y. A defensin from tomato with dual function in defense and development // Plant Mol. Biol. 2009. V. 71. № 1−2. P. 131–143. https://doi.org/10.1007/s11103-009-9512-z
  33. Allen A., Snyder A.K., Preuss M. et al. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth // Planta. 2008. V. 227. № 2. P. 331‒339. https://doi.org/10.1007/s00425-007-0620-1
  34. Mith O., Benhamdi A., Castillo T. et al. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells // Microbiologyopen. 2015. V. 4. № 3. P. 409−422. https://doi.org/10.1002/mbo3.248

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (239KB)
4.

Download (1MB)
5.

Download (1MB)
6.

Download (1MB)

Copyright (c) 2023 М.П. Слезина, Е.А. Истомина, Т.И. Одинцова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies