Characterization of the Spectrum of Mitochondrial DNA Nucleotide Substitutions in Human Populations in High Altitude Environments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using phylogenetic analysis of the nucleotide sequences of whole mitochondrial genomes (mtDNA), the spectra of germinal nucleotide substitutions (on the L-chain of mtDNA) were reconstructed in highland populations of the Pamirs and Tibet in comparison with regional indigenous groups of West Asia, Northeast Siberia, and South Siberia. No differences were found in the distribution of nucleotide substitution frequencies in the mtDNA spectra depending on the population distribution by altitude. Pyrimidine transitions dominate in all mtDNA spectra, and T → C substitutions are the most frequent among them. Next in frequency in most regional groups are A → G substitutions, but in the Pamir and northeast Asian groups G → A substitutions are prevalent. Of the transversions in all populations studied C → A replacements were found to be predominant, except for the Tibetan one, where A → C substitutions are more frequent. The lack of differences in the distribution of mtDNA mutations in high-altitude and non-highland populations indicates that the structure of mtDNA spectra in human populations is independent of the oxidative stress intensity in mitochondria.

About the authors

B. A. Malyarchuk

Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences

Author for correspondence.
Email: malyarchuk@ibpn.ru
Russia, 685000, Magadan

References

  1. Burtscher J., Mallet R.T., Pialoux V. et al. Adaptive responses to hypoxia and/or hyperoxia in humans // Antioxid. Redox Signal. 2022. V. 37. P. 887–912. https://doi.org/10.1089/ars.2021.0280
  2. Chandel N.S., McClintock D.S., Feliciano C.E. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing // J. Biol. Chem. 2000. V. 275. P. 25130–25138. https://doi.org/10.1074/jbc.M001914200
  3. Paddenberg R., Ishaq B., Goldenberg A. et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature // Am. J. Physiol. Lung Cell. Mol. Physiol. 2003. V. 284. P. L710–L719. https://doi.org/10.1152/ajplung.00149.2002
  4. Guzy R.D., Schumacker P.T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia // Exp. Physiol. 2006. V. 91. P. 807–819. https://doi.org/10.1113/expphysiol.2006.033506
  5. Mallet R.T., Burtscher J., Pialoux V. et al. Molecular mechanisms of high-altitude acclimatization // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms24021698
  6. Liu X., Hajnóczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress // Cell Death Differ. 2011. V. 18. P. 1561–1572. https://doi.org/10.1038/cdd.2011.13
  7. Alexeyev M.F. Is there more to aging than mitochondrial DNA and reactive oxygen species? // FEBS J. 2009. V. 276. P. 5768–5787. https://doi.org/10.1111/j.1742-4658.2009.07269.x
  8. Zsurka G., Peeva V., Kotlyar A., Kunz W.S. Is there still any role for oxidative stress in mitochondrial DNA-dependent aging? // Genes (Basel). 2018. V. 9. P. 175. https://doi.org/10.3390/genes9040175
  9. Mikhailova A.G., Mikhailova A.A., Ushakova K. et al. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand // Nucl. Ac. Res. 2022. V. 50. P. 10264–10277. https://doi.org/10.1093/nar/gkac779
  10. Richter C., Park J.-W., Ames B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive // Proc. Natl Acad. Sci. USA. 1988. V. 85. P. 6465–6467. https://doi.org/10.1073/pnas.85.17.6465
  11. Cheng K.C., Cahill D.S., Kasai H. et al. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G > T and A > C substitutions // J. Biol. Chem. 1992. V. 267. P. 166–172.
  12. Kang D., Hamasaki N. Maintenance of mitochondrial DNA integrity: Repair and degradation // Curr. Genet. 2002. V. 41. P. 311–322. https://doi.org/10.1007/s00294-002-0312-0
  13. Malyarchuk B.A., Rogozin I.B., Berikov V.B., Derenko M.V. Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region // Hum. Genet. 2002. V. 111. P. 46–53. https://doi.org/10.1007/s00439-002-0740-4
  14. Малярчук Б.А. Анализ распределения нуклеотидных замен в генах митохондриальной ДНК человека // Генетика. 2005. Т. 41. № 1. С. 93–99.
  15. Kivisild T., Shen P., Wall D.P. et al. The role of selection in the evolution of human mitochondrial genomes // Genetics. 2006. V. 172. P. 373–387. https://doi.org/10.1534/genetics.105.043901
  16. Pereira L., Freitas F., Fernandes V. et al. The diversity present in 5140 human mitochondrial genomes // Am. J. Hum. Genet. 2009. V. 84. P. 628–640. https://doi.org/10.1016/j.ajhg.2009.04.013
  17. Малярчук Б.А. Сравнительный анализ мутационных спектров митохондриальных геномов в популяциях человека // Мол. биология. 2023. Т. 57. № 5. С. 792–796. https://doi.org/10.31857/S0026898423050117
  18. Kang L., Zheng H.X., Chen F. et al. mtDNA lineage expansions in Sherpa population suggest adaptive evolution in Tibetan highlands // Mol. Biol. Evol. 2013. V. 30. P. 2579–2587. https://doi.org/10.1093/molbev/mst147
  19. Kang L., Zheng H.X., Zhang M. et al. MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep31083
  20. Peng M.S., Xu W., Song J.J. et al. Mitochondrial genomes uncover the maternal history of the Pamir populations // Eur. J. Hum. Genet. 2018. V. 26. P. 124–136. https://doi.org/10.1038/s41431-017-0028-8
  21. Basnet R., Rai N., Tamang R. et al. The matrilineal ancestry of Nepali populations // Hum. Genet. 2023. V. 142. P. 167–180. https://doi.org/10.1007/s00439-022-02488-z
  22. Jeong C., Alkorta-Aranburu G., Basnyat B. et al. Admixture facilitates genetic adaptations to high altitude in Tibet // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms4281
  23. Корниенко И.В., Малярчук Б.А. Анализ механизмов возникновения мутаций в митохондриальной ДНК человека // Мол. биология. 2005. Т. 39. № 5. С. 869–877.
  24. Hill-Perkins M., Jones M.D., Karran P. Site-specific mutagenesis in vivo by single methylated or deaminated purine bases // Mut. Res. 1986. V. 162. P. 153–163. https://doi.org/10.1016/0027-5107(86)90081-3
  25. Ide H., Yamaoka T., Kimura Y. Replication of DNA templates containing the alpha-anomer of deoxyadenosine, a major adenine lesion produced by hydroxyl radicals // Biochemistry. 1984. V. 33. P. 7127–7133. https://doi.org/10.1021/bi00189a016
  26. Pandya G.A., Moriya M. 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells // Biochemistry. 1996. V. 35. P. 11487–11492. https://doi.org/10.1021/bi960170h
  27. Basu A.K., Loechler E.L., Leadon S.A., Essigmann J.M. Genetic effects of thymine glycol: site-specific mutagenesis and molecular modeling studies // Proc. Natl Acad. Sci. USA. 1989. V. 86. P. 7677–7681. https://doi.org/10.1073/pnas.86.20.7677
  28. Malyarchuk B.A., Rogozin I.B. Mutagenesis by transient misalignment in human mitochondrial DNA control region // Ann. Hum. Genet. 2004. V. 68. P. 324–339. https://doi.org/10.1046/j.1529-8817.2004.00099.x
  29. Малярчук Б.А. Роль контекста в возникновении мутаций в генах митохондриальной ДНК человека // Генетика. 2005. Т. 41. № 3. С. 385–390.

Copyright (c) 2023 Б.А. Малярчук

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies