Assessing the Association of the Degree of DNA Methylation and the Frequency of Chromosomal Aberrations in Human Lymphocytes in a Single Irradiation of Blood in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most sensitive biomolecule under radiation exposure is DNA, whose damage manifests itself in the form of chromosomal aberrations (CA). The processes of DNA methylation, which are involved in the regulation of gene expression, replication, DNA repair, etc., are also affected by gamma radiation. The aim of the study was to evaluate the relationship between the degree of DNA methylation and the frequency of CA after acute in vitro irradiation of human blood lymphocytes with gamma radiation. The study involved 10 conditionally healthy workers of the Siberian Chemical Combine, in whose blood lymphocytes the degree of methylation of CpG-dinucleotides (wide-genome bisulfite sequencing, XmaI-Reduced representation bisulfite sequencing – XmaI-RRBS) and the frequency of CA (cytogenetic study) after acute in vitro blood irradiation with doses of 0 and 1.5 Gy were evaluated. After acute exposure to gamma radiation in lymphocytes, the frequency of aberrant cells, dicentric chromosomes, chromatid and chromosomal fragments increased. Correlation analysis of the status of CpG-dinucleotide methylation and the frequency of CA revealed changes in the degree of methylation of 97 genes, which strongly correlated positively (56 genes) or negatively (41 genes) with an increased frequency of CA. A primary genome-wide screening of genes whose methylation is correlates with a high frequency of CA was carried out. Many of the identified genes are promising as potential markers of radiation exposure and to study the mechanisms of formation of radiosensitivity of the body and radioresistance of tumors during radiation therapy.

About the authors

O. S. Tsymbal

Seversk Biophysical Research Center of the Federal Medical-Biological Agency

Author for correspondence.
Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk

I. V. Milto

Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Siberian State Medical University

Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk; Russia, 634050, Tomsk

N. V. Litviakov

Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk; Russia, 634009, Tomsk

Zh. А. Startseva

Tomsk National Research Medical Center of the Russian Academy of Sciences

Email: olga-tsymbal@mail.ru
Russia, 634009, Tomsk

A. I. Kalinkin

Research Centre for Medical Genetics

Email: olga-tsymbal@mail.ru
Russia, 115478, Moscow

V. O. Sigin

Research Centre for Medical Genetics

Email: olga-tsymbal@mail.ru
Russia, 115478, Moscow

A. F. Nikolaeva

Research Centre for Medical Genetics

Email: olga-tsymbal@mail.ru
Russia, 115478, Moscow

E. V. Bronikovskaya

Seversk Biophysical Research Center of the Federal Medical-Biological Agency

Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk

D. S. Isubakova

Seversk Biophysical Research Center of the Federal Medical-Biological Agency

Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk

R. M. Takhauov

Seversk Biophysical Research Center of the Federal Medical-Biological Agency; Siberian State Medical University

Email: olga-tsymbal@mail.ru
Russia, 636013, Seversk; Russia, 634050, Tomsk

References

  1. Кужахметова Д.А. Механизмы образования радиационно-индуцированных повреждений хромосом // Вестник совета молодых ученых и специалистов Челябинской области. 2020. Т. 1. № 2(29). С. 18–24.
  2. Бочков Н.П. Хромосомы человека и облучение. М.: Атомиздат, 1971. 168 с.
  3. Пелевина И.И., Алещенко А.В., Антощина М.М. и др. Молекулярные и клеточные последствия аварии на ЧАЭС // Радиац. биология. Радиоэкология. 2011. Т. 51. № 1. С. 154–161.
  4. Пелевина И.И., Алещенко А.В., Антощина М.М. и др. Хромосомные аберрации как показатель реакции лимфоцитов периферической крови человека на облучение in vitro при наличии в организме злокачественной опухоли // Радиац. биология. Радиоэкология. 2016. Т. 56. № 6. С. 565–569.
  5. Pajic J., Rakic B., Rovcanin B. et al. Inter-individual variability in the response of human peripheral blood lymphocytes to ionizing radiation: Comparison of the dicentric and micronucleus assays // Radiation and Environmental Biophysics. 2015. V. 54. P. 317–325.
  6. Pajic J., Rovcanin B., Kekic D. et al. The influence of redox status on inter-individual variability in the response of human peripheral blood lymphocytes to ionizing radiation // Intern. J. Rad. Biology. 2018. V. 94. № 6. P. 569–575. https://doi.org/10.1007/s00411-015-0596-3
  7. Druzhinin V.G., Sinitsky M.Yu., Larionov A.V. et al. Assessing the level of chromsome aberrations in peripheral blood lymphocytes in long-term resident children under conditions of high exposure to radon and its decay products // Mutagenesis. 2015. V. 30. № 5. P. 677–683. https://doi.org/10.1093/mutage/gev029
  8. Qian Q.-Z., Cao X.-K., Shen F.-H., Wang Q. Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers // Rad. Protection Dosimetry. 2016. V. 168. № 2. P. 197–203. https://doi.org/10.1093/rpd/ncv290
  9. Литвяков Н.В., Фрейдин М.Б., Халюзова М.В. и др. Частота и спектр цитогенетических нарушений у работников Сибирского химического комбината // Радиац. биология. Радиоэкология. 2014. Т. 54. № 3. С. 283–296.
  10. Shi L., Fujioka K., Sakurai-Ozato N. et al. Chromosomal abnormalities in human lymphocytes after computed tomography scan procedure // Radiat. Res. 2018. V. 190. № 4. P. 424–432. https://doi.org/10.1667/RR14976.1
  11. Franco R., Schoneveld O., Georgakilas A.G., Panayiotidis M.I. Oxidative stress, DNA methylation and carcinogenesis // Cancer Lett. 2008. V. 266. № 1. P. 6–11. https://doi.org/10.1016/j.canlet.2008.02.026
  12. Kuzmina N.S., Lapteva N.Sh., Rubanovich A.V. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure // Environmental Res. 2016. V. 146. P. 10–17. https://doi.org/10.1016/j.envres.2015.12.008
  13. Кузьмина Н.С., Лаптева Н.Ш., Русинова Г.Г. и др. Дозовая зависимость гиперметилирования промоторов генов в лейкоцитах крови лиц, подвергшихся облучению в результате профессиональной деятельности // Соврем. проблемы радиац. генетики: Материалы Росс. конф. с международным участием, 27–28 июня. Дубна, 2019. C. 76–78.
  14. Kennedy E.M., Powell D.R., Li Z. et al. Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer // Sci. Rep. 2018. V. 8. № 1. P. 6709. https://doi.org/10.1038/s41598-018-24755-8
  15. Lee Y., Kim Y.J., Choi Y.J. et al. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers // Intern. J. Radiat. Biol. 2015. V. 91. № 2. P. 142–149. https://doi.org/10.3109/09553002.2015.969847
  16. Цымбал О.С., Исубакова Д.С., Брониковская Е.В. и др. Роль метилирования Bak1 в индукции хромосомных аберраций при хроническом низкоинтенсивном внешнем облучении // Мед. радиология и радиац. безопасность. 2020. Т. 65. № 5. С. 29–34.
  17. Исубакова Д.С., Цымбал О.С., Брониковская Е.В. и др. Метилирование промоторов генов апоптоза в лимфоцитах крови работников, подвергавшихся профессиональному внешнему облучению // Бюлл. эксперим. биологии и медицины. 2021. Т. 171. № 3. С. 339–343.
  18. Танас А.С., Кузнецова Е.Б., Борисова М.Э. и др. Дизайн метода бисульфитного секвенирования ограниченных наборов геномных локусов (RRBS) для анализа метилирования CpG-островков человека в больших выборках // Мол. биология. 2015. Т. 49. № 4. С. 689–699.
  19. Tanas A.S., Borisova M.E., Kuznetsova E.B. et al. Rapid and affordable genome-wide bisulfite DNA sequencing by XmaI-reduced representation bisulfite sequencing // Epigenomics. 2017. V. 9. № 6. P. 833–847. https://doi.org/10.2217/epi-2017-0031
  20. Suomi T., Seyednasrollah F., Jaakkola M.K. et al. ROTS: An R package for reproducibility-optimized statistical testing // PLoS Comput. Biol. 2017. V. 13. № 5. P. e1005562. https://doi.org/10.1371/journal.pcbi.1005562
  21. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2020. URL: https://www.R-project.org/
  22. Аклеев А.В., Шведов В.Л., Костюченко В.А. Медико-биологические и экологические последствия радиоактивного загрязнения реки Теча. М.: Медбиоэкстрем. 2001. 530 с.
  23. Чередниченко О.Г., Губицкая Е.Г. Цитогенетический анализ медицинских работников контактирующих с источниками ионизирующей радиации // Научно-техн. журн. нац. ядерного центра Республики Казахстан. 2016. Т. 1. № 65. С. 112–117.
  24. Севанькаев А.В., Деденков А.Н. Актуальные проблемы современной радиобиологии в свете оценки и прогнозирования последствий аварии на Чернобыльской АЭС // Радиобиология. 1990. Т. 30. № 5. С. 579–582.
  25. Jin H., Cho Y. Structural and functional relationships of FAN1 // DNA Repair. 2017. V. 56. P. 135–143. https://doi.org/10.1016/j.dnarep.2017.06.016
  26. Norton C., Clarke D., Holmstrom J. et al. Altered epigenetic profiles in the placenta of preeclamptic and intrauterine growth restriction patients // Cells. 2023. V. 12. № 8. P. 1130. https://doi.org/10.3390/cells12081130
  27. Dubash A.D., Guilluy Ch., Srougi M.C. et al. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals // PLoS One. 2011. V. 6. № 2. P. e17380. https://doi.org/10.1371/journal.pone.0017380
  28. Schaefer A., Der Ch.J. RHOA takes the RHOad less traveled to cancer // Trends in Cancer. 2022. V. 8. № 8. P. 655–669. https://doi.org/10.1016/j.trecan.2022.04.005
  29. Zou L.-H., Shang Z.-F., Tan W. et al. TNKS1BP1 functions in DNA double-strand break repair though facilitating DNA-PKcs autophosphorylation dependent on PARP-1 // Oncotarget. 2015. V. 6. № 9. P. 7011–7022. https://doi.org/10.18632/oncotarget.3137
  30. Katsuki Y., Jeggo P.A., Uchihara Y. et al. DNA double-strand break end resection: A critical relay point for determining the pathway of repair and signaling // Genome Instability & Disease. 2020. V. 1. P. 155–171. https://doi.org/10.1007/s42764-020-00017-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (250KB)

Copyright (c) 2023 О.С. Цымбал, Д.С. Исубакова, Е.В. Брониковская, А.Ф. Николаева, В.О. Сигин, А.И. Калинкин, Ж.А. Старцева, Н.В. Литвяков, И.В. Мильто, Р.М. Тахауов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies