The Influence of Deletion in the Non-Catalytic Domain of GdpP Mediated by Genome Editing with CRISPR/Cas9 on the Phenotype of Staphylococcus aureus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high cellular level of cyclic di-adenosine monophosphate (c-di-AMP), which in turn results in resistance to cell-wall targeted antibiotics in Staphylococcus aureus. An increase in intracellular molecules of c-di-AMP is due to mutations in the DHH/DHHA1 domain of the GdpP protein. The influence of mutations in the other domains of GdpP has not been fully studied. The aim of this study was to obtain a targeted non-frameshifting deletion in the GdpP protein’s linker region between the GGDEF and DHH/DHHA1 domains. Restriction-modification deficient strain S. aureus RN4220 was used for genome editing. Two vectors with thermosensitive origins of replication were used. The first pCN-EF2132tet vector contained the Enterococcus faecalis EF2132 recombinase gene; the second pCAS9counter vector contained the Streptococcus pyogenes RNA-directed Cas9 nuclease gene. The S. aureus RN4220 strain was transformed with the pCN-EF2132tet vector to obtain recombining competent cells, and then a donor oligonucleotide was introduced simultaneously with the counterselection vector. A recombinant strain with a target deletion (90 bp) in GdpP (amino acids 308–337) was obtained after two sequential transformations. The mutant strain showed no changes in the phenotype: lag phase, growth rate, doubling time, and colony morphology did not differ from the progenitor strain. Susceptibility to cell-wall targeted antibiotics was the same as in the progenitor strain. Thus, mutations in the linker region between the GGDEF and DHH/DHHA1 domains of the GdpP do not affect susceptibility to antibiotics in S. aureus.

About the authors

Yu. V. Sopova

Saint Petersburg State University,; St. Petersburg Branch of the Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: y.sopova@spbu.ru
Russia, 199034, Saint Petersburg; Russia, 198504, Saint Petersburg

M. E. Velizhanina

Saint Petersburg State University,; All-Russia Research Institute for Agricultural Microbiology

Email: y.sopova@spbu.ru
Russia, 199034, Saint Petersburg; Russia, 196608, Saint Petersburg, Pushkin

D. А. Кandina

Saint Petersburg State University,; Pushkin Leningrad State University

Email: y.sopova@spbu.ru
Russia, 199034, Saint Petersburg; Russia, 196605, Pushkin

V. V. Gostev

Pediatric Research and Clinical Center for Infectious Diseases; Mechnikov North-Western State Medical University

Email: y.sopova@spbu.ru
Russia, 197022, Saint Petersburg; Russia, 195067, Saint Petersburg

P. S. Chulkova

Pediatric Research and Clinical Center for Infectious Diseases

Email: y.sopova@spbu.ru
Russia, 197022, Saint Petersburg

O. S. Sulian

Pediatric Research and Clinical Center for Infectious Diseases

Email: y.sopova@spbu.ru
Russia, 197022, Saint Petersburg

S. V. Sidorenko

Pediatric Research and Clinical Center for Infectious Diseases; Mechnikov North-Western State Medical University

Email: y.sopova@spbu.ru
Russia, 197022, Saint Petersburg; Russia, 195067, Saint Petersburg

References

  1. Tong S.Y., Davis J.S., Eichenberger E. et al. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management // Clin. Microbiol. Rev. 2015. V. 28. № 3. P. 603–661. https://doi.org/10.1128/CMR.00134-14
  2. Monk I.R., Foster T.J. Genetic manipulation of Staphylococci-breaking through the barrier // Front. Cell. Infect. Microbiol. 2012. V. 2:49. P. 1–9. https://doi.org/10.3389/fcimb.2012.00049
  3. Kreiswirth B.N., Lofdahl S., Betley M.J. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage // Nature. 1983. V. 305. № 5936. P. 709–712. https://doi.org/10.1038/305709a0
  4. Chen W., Zhang Y., Yeo W.S. et al. Rapid and efficient genome editing in Staphylococcus aureus by using an engineered CRISPR/Cas9 system // J. Am. Chem. Soc. 2017. V. 139. № 10. P. 3790–3795. https://doi.org/10.1021/jacs.6b13317
  5. Penewit K., Holmes E.A., McLean K. et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection // mBio. 2018. V. 9. № 1. https://doi.org/10.1128/mBio.00067-18
  6. Liu Q., Jiang Y., Shao L. et al. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus // Acta Biochim. Biophys. Sin (Shanghai). 2017. V. 49. № 9. P. 764–770. https://doi.org/10.1093/abbs/gmx074
  7. Yin W., Cai X., Ma H. et al. A decade of research on the second messenger c-di-AMP // FEMS Microbiol. Rev. 2020. V. 44. № 6. P. 701–724. https://doi.org/10.1093/femsre/fuaa019
  8. Zarrella T.M., Bai G. The many roles of the bacterial second messenger cyclic di-AMP in adapting to stress cues // J. Bacteriol. 2020. V. 203. № 1. https://doi.org/10.1128/JB.00348-20
  9. Gostev V., Sopova J., Kalinogorskaya O. et al. In vitro ceftaroline resistance selection of methicillin-resistant Staphylococcus aureus involves different genetic pathways // Microb. Drug. Resist. 2019. V. 25. № 10. P. 1401–1409. https://doi.org/10.1089/mdr.2019.0130
  10. Gostev V., Kalinogorskaya O., Ivanova K. et al. In vitro selection of high-level beta-lactam resistance in methicillin-susceptible Staphylococcus aureus // Antibiotics (Basel). 2021. V. 10. № 6. https://doi.org/10.3390/antibiotics10060637
  11. Sprouffske K., Wagner A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves // BMC Bioinformatics. 2016. V. 17. № 172. https://doi.org/10.1186/s12859-016-1016-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (388KB)

Copyright (c) 2023 Ю.В. Сопова, М.Е. Велижанина, Д.А. Кандина, В.В. Гостев, П.С. Чулкова, О.С. Сулян, С.В. Сидоренко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies