The Colonization History of Iturup Island by the Red-Backed Vole Craseomys rufocanus according to the Analysis of the Cytochrome b (cytb) Fragment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The hypotheses on colonization history of red-backed vole of Iturup Island comparative analysis of distribution and number of haplotypes of mitochondrial cytochrome b gene (662 bp) in vole sampled at various sites along the Iturup Island perimeter and Hokkaido, Kunashir and Sakhalin Islands and adjacent regions of the mainlandhas been carried out. All studied samples from the Iturup Island (68) belonged to the only one haplotype most close to the haplotypes of voles from the Sakhalin Island. The only sample from the Kunashir Island, nearest to the Iturup Island possessed the same haplotype, three additional samples from this island have haplotypes related to haplotypes of voles from the Sakhalin Island and fall within the so called “Sakhalin” clade, while the majority of haplotypes of voles from the Kunashir Island appeared to be close to haplotypes of voles from the Hokkaido Island and make up with them one independent clade, genetically very different from clade of Sakhalin and Iturup samples. The obtained data on the genetic variability of voles from the Iturup Island provides convincing evidence in favour of the recent introduction of the red-backed vole C. rufocanus to the Iturup Island, most likely with sea transport from Sakhalin.

About the authors

N. I. Abramson

Zoological Institute, Russian Academy of Sciences

Author for correspondence.
Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

L. S. Tursunova

Zoological Institute, Russian Academy of Sciences

Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

T. V. Petrova

Zoological Institute, Russian Academy of Sciences

Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

I. Yu. Popov

Saint-Petersburg State University

Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

V. V. Platonov

Zoological Institute, Russian Academy of Sciences

Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

A. V. Abramov

Zoological Institute, Russian Academy of Sciences

Email: natalia_abr@mail.ru
Russia, 199034, Saint-Petersburg

References

  1. Parent C.E., Caccone A., Petren K. Colonization and diversification of Galápagos terrestrial fauna: A phylogenetic and biogeographical synthesis // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008. V. 363. № 1508. P. 3347–3361. https://doi.org/10.1098/rstb.2008.0118
  2. Sartono S. On pleistocene migration routes of vertebrate fauna in Southeast Asia // Geol. Soc. of Malaysia. Bulletin. 1973. № 6. P. 273–286.
  3. Sato J. A review of the processes of mammalian faunal assembly in Japan: Insights from molecular phylogenetics // Species Diversity of Animals in Japan. Diversity and Commonality in Animals. Tokyo: Springer, 2016. https://doi.org/10.1007/978-4-431-56432-4_3
  4. Dobson M. Patterns of distribution in Japanese land mammals // Mammal Review. 1994. V. 24. № 3. P. 91–111. https://doi.org/10.1111/j.1365-2907.1994.tb00137.x
  5. Wakana S., Sakaizumi M.,Tsuchiya K. et al. Phylogenetic implications of variations in rDNA and mtDNA in red-backed voles collected in Hokkaido, Japan, and in Korea // Mammal Study. 1996. V. 21. № 1. P. 15–26. https://doi.org/10.3106/mammalstudy.21.15
  6. Kohli B., Fedorov V., Waltari E., Cook J. Phylogeography of a Holarctic rodent (Myodes rutilus): Testing high-latitude biogeographical hypotheses and the dynamics of range shifts // J. Biogeography. 2014. V. 42. P. 377–389. https://doi.org/10.1111/jbi.12433
  7. Богатов В.В. Биогеографические проблемы Курильского архипелага // Растительный и животный мир Курильских островов. Владивосток: Дальнаука, 2002. С. 150–160.
  8. Hoekstra H., Fagan W. Body size, dispersal ability and compositional disharmony: The carnivore-dominated fauna of the Kuril Islands // Diversity and Distributions. 1998. V. 4. P. 135–149. https://doi.org/10.1046/j.1365-2699.1998.00016.x
  9. Belousova M., Belousov A., Miller T. Kurile Islands // Encyclopedia of Islands. Berkeley, Los Angeles, London: University of California Press, 2009. P. 520–524.
  10. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A. et al. Holocene climatic changes and vegetation development in the Kuril Islands // Quaternary International. 2013. V. 290–291. P. 126–138. https://doi.org/10.1016/j.quaint.2012.06.034
  11. Khlyap L.A., Bobrov V.V., Warshavsky A.A. Biological invasions on Russian territory: Mammals // Russ. J. Biol. Invasions. 2010. V. 1–2. P. 127–140. https://doi.org/10.1134/S2075111710020128
  12. Frisman L.V., Kartavtseva I.V., Pavlenko M.V. et al. Gene-geographic variation and genetic differentiation in red-backed voles of the genus Clethrionomys (Rodentia, Cricetidae) from the Region of the Sea of Okhotsk // Russ. J. Genetics. 2002. V. 38. P. 538–547. https://doi.org/10.1023/A:1015595315205
  13. Abramson N., Petrova T., Dokuchaev N. et al. Phylogeography of the gray red-backed vole Craseomys rufocanus (Rodentia: Cricetidae) across the distribution range inferred from nonrecombining molecular markers // Russ. J. Theriology. 2012. V. 11. P. 137–156. https://doi.org/10.15298/rusjtheriol.11.2.04
  14. Ishibashi Y., Saitoh T., Abe S., Yoshida M.C. Sex – related spatial kin structure in a spring population of grey – sided voles Clethrionomys rufocanus as revealed by mitochondrial and microsatellite DNA analyses // Mol. Ecology. 1997. V. 6. № 1. P. 63–71. https://doi.org/10.1046/j.1365-294x.1997.00152.x
  15. Ims R.A. Kinship and origin effects on dispersal and space sharing in Clethrionomys rufocanus // Ecology. 1989. V. 70. № 3. P. 607–616. https://doi.org/10.2307/1940212
  16. Iwasa M.A., Utsumi Y., Nakata K. et al. Geographic patterns of cytochrome b and sry gene lineages in the gray red-backed vole Clethrionomys rufocanus from Far East Asia including Sakhalin and Hokkaido // Zool. Sci. 2000. V. 17. № 4. P. 477–484. https://doi.org/10.2108/0289-0003(2000)17[477:GPO-CBA]2.0.CO;2
  17. Abramson N., Melnikova E., Kostygov A. Genetic variation and phylogeography of the bank vole (Clethrionomys glareolus, Arvicolinae, Rodentia) in Russia with special reference to the introgression of the mtDNA of a closely related species, red-backed vole (Cl. rutilus) // Russ. J. Genetics. 2009. V. 45. P. 533–545. https://doi.org/10.1134/S1022795409050044
  18. Hall T. BioEdit: An important software for molecular biology // GERF Bull. of Biosciences. 2011. V. 2. № 1. P. 60–61.
  19. Okonechnikov K., Golosova O., Fursov M. The UGENE team Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. № 8. P. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  20. Cook J.A., Runck A.M., Conroy C.J. Historical biogeography at the crossroads of the northern continents: Molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae) // Mol. Phylogenet. and Evol. 2004. V. 30. № 3. P. 767–777. https://doi.org/10.1016/S1055-7903(03)00248-3
  21. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. 2017. V. 34. № 12. P. 3299–3302. https://doi.org/10.1093/molbev/msx248
  22. Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis Version 11 // Mol. Biol. Evol. 2021. V. 38. I. 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  23. Bryant L.J. Popart: Full-feature software for haplotype network construction // Meth. Ecol. Evol. 2015. V. 6. № 6. P. 1110–1116. https://doi.org/10.1111/2041-210x.12410
  24. Bandelt H.J., Forster P., Rohl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  25. Мартыненко А.Б., Бочарников В.Н. Экологическое районирование Дальнего Востока // Известия РАН. Серия географическая. 2008. № 2. С. 76–84.
  26. Abe H. Winter food of the red fox, Vulpes vulpes schrencki Kishida (Carnivora: Canidae), in Hokkaido, with special reference to vole populations // Applied Entomol. and Zool. 1975. V. 10. № 2. P. 40–51. https://doi.org/10.1303/aez.10.40
  27. Brown J.H. Mammals on mountaintops: Nonequilibrium insular biogeography // Am. Naturalist. 1971. V. 105. № 945. P. 467–478. https://doi.org/10.1086/282738
  28. Honda A., Murakami S., Harada M. et al. Late Pleistocene climate change and population dynamics of Japanese Myodes voles inferred from mitochondrial cytochrome b sequences // J. Mammalogy. 2019. V. 100. № 4. P. 1156–1168. https://doi.org/10.1093/jmammal/gyz093
  29. Nei M., Maruyama T., Chakraborty R. The bottleneck effect and genetic variability in populations // Evolution. 1975. V. 29. № 1. P. 1–10. https://doi.org/10.2307/2407137

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (493KB)
3.

Download (1MB)

Copyright (c) 2023 Н.И. Абрамсон, Л.С. Турсунова, Т.В. Петрова, И.Ю. Попов, В.В. Платонов, А.В. Абрамов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies