The Content of Carotoids and the Expression Profile of Carotenoid Biogenesis Genes during Long-Term Cold Storage of Potato Tubers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carotenoids are secondary metabolites that are synthesized and stored in all types of plant plastids. These pigments play a significant role in protection against oxidative stress, as well as in the color of flowers and sink organs. Tubers of potato Solanum tuberosum L. synthesize carotenoids, including during post-harvest storage. The state of physiological dormancy and cold stress response are controlled, among other things, by abscisic acid (ABA), which is an apocarotenoid. In this study, we analyzed the expression of carotenoid biogenesis pathway genes (PSY1, PSY2, PSY3, PDS, ZDS, Z-ISO, CRTISO, LCYB1, LCYB2, LCYE, VDE, ZEP, NSY, NCED1, NCED2, and NCED6), as well as genes putatively involved in initiation of chromoplast differentiation (OR1 and OR2), in the dynamics of long-term cold storage (September, February, April) of tubers of potato cultivars Barin, Utro, Krasavchik, Sevemoe siyanie and Nadezhda. It was shown that OR1, and OR2 mRNAs are present in tubers of all cultivars at all stages of storage. The expression profile of all analyzed carotenoid biosynthesis genes during tuber storage was characterized by a significant decrease in transcript levels in February compared to September, with some exceptions. In the period from February to April, the level of gene transcripts changed insignificantly. The biochemical analysis of the carotenoid content in the dynamics of cold storage showed that at the time of harvesting, the highest carotenoid content was in tubers of the cv. Utro; tubers of other cultivars were characterized by a similar amount of carotenoids. During storage from September to April, the total carotenoids changed in a genotype-dependent manner without any trend common to all cultivars.

About the authors

A. M. Kulakova

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: kulakova_97@mail.ru
Russia, 119071, Moscow

A. V. Shchennikova

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences

Email: kulakova_97@mail.ru
Russia, 119071, Moscow

E. Z. Kochieva

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences

Email: kulakova_97@mail.ru
Russia, 119071, Moscow

References

  1. Howitt C.A., Pogson B.J. Carotenoid accumulation and function in seeds and non-green tissues // Plant, Cell and Environment. 2006. V. 29. P. 435–445. https://doi.org/10.1111/j.1365-3040.2005.01492.x
  2. Lopez A.B., Van Eck J., Conlin B.J. et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers // J. Exp. Bot. 2008. V. 59. № 2. P. 213–223. https://doi.org/10.1093/jxb/erm299
  3. Wurtzel E.T. Chapter five genomics, genetics, and biochemistry of maize carotenoid biosynthesis // Recent Adv. Phytochemistry. 2004. V. 38. P. 85–110. https://doi.org/10.1016/S0079-9920(04)80006-6
  4. Brown C.R., Culley C., Yang C.P. et al. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding lines // J. Am. Soc. Horticultural Sci. 2005. V. 130. P. 174–180. https://doi.org/10.21273/JASHS.130.2.174
  5. Rosas-Saavedra C., Stange C. Biosynthesis of carotenoids in plants: enzymes and color // Subcell. Biochem. 2016. V. 79. P. 35–69. https://doi.org/10.1007/978-3-319-39126-7_2
  6. Dhar M.K., Mishra S., Bhat A. et al. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism // Brief Funct. Genomics. 2020. V. 19. № 1. P. 1–9. https://doi.org/10.1093/bfgp/elz037
  7. Huang X., Shi H., Hu Z. et al. ABA is involved in regulation of cold stress response in Bermudagrass // Front. Plant Sci. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01613
  8. Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism // Annu. Rev. Plant Biol. 2005. V. 56. P. 165–185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  9. Cutler S.R., Rodriguez P.L., Finkelstein R.R. et al. Abscisic acid: emergence of a core signaling network // Annu. Rev. Plant Biol. 2010. V. 61. P. 651–679. https://doi.org/10.1146/annurev-arplant-042809-112122
  10. Fujisawa M., Watanabe M., Choi S.K. et al. Enrichment of carotenoids in flaxseed (Linum usitatissimum) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB // J. Biosci. Bioeng. 2008. V. 105. № 6. P. 636–641. https://doi.org/10.1263/jbb.105.636
  11. Maass D., Arango J., Wüst F. et al. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels // PLoS One. 2009. V. 4. https://doi.org/10.1371/journal.pone.0006373
  12. Naqvi S., Zhu C., Farre G. et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways // PNAS. 2009. V. 106. № 19. P. 7762–7767. https://doi.org/10.1073/pnas.0901412106
  13. Ampomah-Dwamena C., Tomes S., Thrimawithana A.H. et al. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple (Malus × domestica) // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.967143
  14. Fraser P.D., Romer S., Shipton C.A. et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner // PNAS. 2002. V. 99. № 2. P. 1092–1097. https://doi.org/10.1073/pnas.241374598
  15. Ducreux L.J., Morris W.L., Hedley P.E. et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein // J. Exp. Bot. 2005. V. 56. № 409. P. 81–89. https://doi.org/10.1093/jxb/eri016
  16. Diretto G., Tavazza R., Welsch R. et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase // BMC Plant Biol. 2006. V. 6. https://doi.org/10.1186/1471-2229-6-13
  17. Harjes C.E., Rocheford T.R., Bai L. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification // Science. 2008. V. 319. № 5861. P. 330–333. https://doi.org/10.1126/science.1150255
  18. Yu B., Lydiate D.J., Young L.W. et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase // Transgenic Res. 2008. V. 17. № 4. P. 573–585. https://doi.org/10.1007/s11248-007-9131-x
  19. Zunjare R.U., Chhabra R., Hossain F. et al. Molecular characterization of 5' UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification // 3 Biotech. 2018. V. 8. № 1. https://doi.org/10.1007/s13205-018-1100-y
  20. Zhu K., Zheng X., Ye J. et al. Building the synthetic biology toolbox with enzyme variants to expand opportunities for biofortification of provitamin A and other health-promoting carotenoids // J. Agric. Food Chem. 2020. V. 68. № 43. P. 12048–12057. https://doi.org/10.1021/acs.jafc.0c04740
  21. Ye X., Al-Babili S., Klöti A. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm // Science. 2000. V. 287. № 5451. P. 303–305. https://doi.org/10.1126/science.287.5451.303
  22. Paine J.A., Shipton C.A., Chaggar S. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content // Nat. Biotechnol. 2005. V. 23. № 4. P. 482–487. https://doi.org/10.1038/nbt1082
  23. D’Ambrosio C., Giorio G., Marino I. et al. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β‑cyclase (tlcy-b) cDNA // Plant Science. 2004. V. 166. P. 207–214. https://doi.org/10.1016/j.plantsci.2003.09.015
  24. Gerjets T., Sandmann G. Ketocarotenoid formation in transgenic potato // J. Exp. Bot. 2006. V. 57. № 14. P. 3639–3645. https://doi.org/10.1093/jxb/erl103
  25. Arnoux P., Morosinotto T., Saga G. et al. A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana // Plant Cell. 2009. V. 21. № 7. P. 2036–2044. https://doi.org/10.1105/tpc.109.068007
  26. Pastori G.M., Kiddle G., Antoniw J. et al. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling // Plant Cell. 2003. V. 15. № 4. P. 939–951. https://doi.org/10.1105/tpc.010538
  27. Tran B.Q., Tran L.H., Kim S.J. et al. Altered regulation of porphyrin biosynthesis and protective responses to acifluorfen-induced photodynamic stress in transgenic rice expressing Bradyrhizobium japonicum Fe-chelatase // Pestic. Biochem. Physiol. 2019. V. 159. P. 1–8. https://doi.org/10.1016/j.pestbp.2019.05.017
  28. Zita W., Bressoud S., Glauser G. et al. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation // PLoS One. 2022. V. 17. № 12. https://doi.org/10.1371/journal.pone.0277774
  29. Zhang Y.M., Wu R.H., Wang L. et al. Plastid diversity and chromoplast biogenesis in differently coloured carrots: role of the DcOR3Leu gene // Planta. 2022. V. 256(6). Article 104. https://doi.org/10.1007/s00425-022-04016-9
  30. Lu S., Van Eck J., Zhou X. et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation // Plant Cell. 2006. V. 18. № 12. P. 3594–3605. https://doi.org/10.1105/tpc.106.046417
  31. Sierra J., McQuinn R.P., Leon P. The role of carotenoids as a source of retrograde signals: Impact on plant development and stress responses // J. Exp. Bot. 2022. V. 73. № 21. P. 7139–7154. https://doi.org/10.1093/jxb/erac292
  32. Eltawil M.A., Samuel D.K., Singhal O.P. Potato storage technology and store design aspects // Agricultural Engineering Intern.: CIGR J. 2006. V. VIII. № 11. P. 1–18.
  33. Brown C.R., Edwards C.G., Yang C.P. et al. Orange flesh trait in potato – inheritance and carotenoid content // J. Am. Soc. Horticultural Science. 1993. V. 118. P. 145–150. https://doi.org/10.21273/JASHS.118.1.145
  34. Payyavula R.S., Navarre D.A., Kuhl J.C. et al. Differential effects of environment on potato phenylpropanoid and carotenoid expression // BMC Plant Biol. 2012. V. 12. 39. https://doi.org/10.1186/1471-2229-12-39
  35. Fogelman E., Oren-Shamir M., Hirschberg J. et al. Nutritional value of potato (Solanum tuberosum) in hot climates: anthocyanins, carotenoids, and steroidal glycoalkaloids // Planta. 2019. V. 249. № 4. P. 1143–1155. https://doi.org/10.1007/s00425-018-03078-y
  36. Haider M.W., Nafees M., Ahmad I. et al. Postharvest dormancy-related changes of endogenous hormones in relation to different dormancy-breaking methods of potato (Solanum tuberosum L.) tubers // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.945256
  37. Wiberley-Bradford A.E., Busse J.S., Jiang J. et al. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin // BMC Res. Notes. 2014. V. 7. Article 801. https://doi.org/10.1186/1756-0500-7-801
  38. Efremov G.I., Slugina M.A., Shchennikova A.V. et al. Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon) // Plants. 2020. V. 9. № 9. https://doi.org/10.3390/plants9091169
  39. Filyushin M.A., Dzhos E.A., Shchennikova A.V. et al. Dependence of pepper fruit colour on basic pigments ratio and expression pattern of carotenoid and anthocyanin biosynthesis genes // Rus. J. Plant Physiol. 2020. V. 67. P. 1054–1062. https://doi.org/10.31857/S0015330320050048
  40. Lopez-Pardo R., de Galarreta J.I.R., Ritter E. Selection of housekeeping genes for qRT-PCR analysis in potato tubers under cold stress // Mol. Breeding. 2013. V. 31. № 1. P. 39–45. https://doi.org/10.1007/s11032-012-9766-z
  41. Tang X., Zhang N., Si H. et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress // Plant Methods. 2017. V. 13. № 85. https://doi.org/10.1186/s13007-017-0238-7
  42. Nesterenko S., Sink K.C. Carotenoid profiles of potato breeding lines and selected cultivars // Hortscience. 2003. V. 38. P. 1173–1177. https://doi.org/10.21273/HORTSCI.38.6.1173
  43. Morris W.L., Ducreux L., Griffiths D.W. et al. Carotenogenesis during tuber development and storage in potato // J. Exp. Bot. 2004. V. 55. № 399. P. 975–982. https://doi.org/10.1093/jxb/erh121
  44. Bartley G.E., Viitanen P.V., Bacot K.O. et al. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway // J. Biol. Chem. 1992. V. 267. P. 5036–5039. https://doi.org/10.1016/S0021-9258(18)42724-X
  45. Bartley G.E., Scolnik P.A. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase // J. Biol. Chem. 1993. V. 268. P. 25718–25721. https://doi.org/10.1016/S0021-9258(19)74448-2
  46. Pasare S., Wright K., Campbell R. et al. The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2 // Protoplasma. 2013. V. 250. № 6. P. 1381–1392. https://doi.org/10.1007/s00709-013-0521-z
  47. Stauder R., Welsch R., Camagna M. et al. Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family // Front. Plant Sci. 2018. V. 9. https://doi.org/10.3389/fpls.2018.00255
  48. Naing A.H., Kim C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses // Physiol. Plant. 2021. V. 172. № 3. P. 1711–1723. https://doi.org/10.1111/ppl.13373
  49. Destefano-Beltrán L., Knauber D., Huckle L. et al. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues // Plant Mol. Biol. 2006. V. 61. № 4-5. P. 687–697. https://doi.org/10.1007/s11103-006-0042-7
  50. Welsch R., Zhou X., Yuan H. et al. Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis // Mol. Plant. 2018. V. 11. № 1. P. 149–162. https://doi.org/10.1016/j.molp.2017.11.003
  51. Osorio C.E. The role of Orange gene in carotenoid accumulation: manipulating chromoplasts toward a colored future // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.01235
  52. Tzuri G., Zhou X., Chayut N. et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo) // Plant J. 2015. V. 82. P. 267–279. https://doi.org/10.1111/tpj.12814
  53. Yuan H., Owsiany K., Sheeja T.E. et al. A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis // Plant Physiol. 2015. V. 169. № 1. P. 421–431. https://doi.org/10.1104/pp.15.00971

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (159KB)
3.

Download (540KB)
4.

Download (564KB)
5.

Download (496KB)
6.

Download (552KB)
7.

Download (178KB)
8.

Download (73KB)
9.

Download (775KB)

Copyright (c) 2023 А.В. Кулакова, А.В. Щенникова, Е.З. Кочиева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies