Flavin-Containing Monooxygenases (FMO) Genes in Garlic Allium sativum L.: Genome-Wide Identification, Characterization, and Expression Analysis in Response to Fusarium proliferatum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this study, 39 flavin-containing monooxygenase genes were identified in the garlic (Allium sativum L.) genome. The distribution of AsFMOs into three phylogenetic clades associated with N-oxygenation (22 proteins), auxin biosynthesis (13 proteins), and S-oxygenation (4 proteins) has been shown. FAD and NADPH binding, FMO-identifying, and FATGY motifs were found in the AsFMO sequences. AsFMOs transcripts were present in all garlic organs with a maximum in roots, leaves, peduncle, and aerial bulbs. In response to infection with the pathogenic fungus Fusarium proliferatum, differential expression of clade I genes (AsFMO4, AsFMO11, AsFMO12, and AsFMO35) was detected in the roots of cv. Sarmat and Strelets, contrasting in Fusarium rot resistance. At the same time, the expression response of the clade III AsFMO18 gene involved in the alliin biosynthesis was similar for both cultivars, regardless of their resistance/susceptibility to Fusarium. This suggests the clades I and III genes redundancy in plant responses to infection. The AsFMO35 coding and regulatory sequences were analyzed in the Sarmat and Strelets cultivars. It was shown that the AsFMO35 promoter differs in the presence of the ABA-associated cis-regulatory element ABRE in cv. Strelets susceptible to Fusarium rot.

About the authors

O. K. Anisimova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: michel7753@mail.ru
Russia, 119071, Moscow

A. V. Shchennikova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: michel7753@mail.ru
Russia, 119071, Moscow

E. Z. Kochieva

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: michel7753@mail.ru
Russia, 119071, Moscow

M. A. Filyushin

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: michel7753@mail.ru
Russia, 119071, Moscow

References

  1. Thodberg S., Jakobsen Neilson E.H. The “Green” FMOs: diversity, functionality and application of plant flavoproteins // Catalysts. 2020. V. 10. Article 329. https://doi.org/10.3390/catal10030329
  2. Van Berkel W.J.H., Kamerbeek N.M., Fraaije M.W. Flavoprotein monooxygenases, A diverse class of oxidative biocatalysts // J. Biotechnol. 2006. V. 124. P. 670–689. https://doi.org/10.1016/j.jbiotec.2006.03.044
  3. Schlaich N.L. Flavin-containing monooxygenases in plants: looking beyond detox // Trends Plant Sci. 2007. V. 12. P. 412–418. https://doi.org/10.1016/j.tplants.2007.08.009
  4. Ziegler D.M. Flavin-containing monooxygenases: Catalytic mechanism and substrate specificities // Drug Metab. Rev. 1988. V. 19. P. 1–32.
  5. Ziegler D.M. An overview of the mechanism, substrate specificities, and structure of FMOs // Drug Metab. Rev. 2002. V. 34. P. 503–511. https://doi.org/10.1081/dmr-120005650
  6. Yanni S.B., Annaert P.P., Augustijns P. et al. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes // Drug Metab. Dispos. 2008. V. 36. P. 1119–1125. https://doi.org/10.1124/dmd.107.019646
  7. Rossner R., Kaeberlein M., Leiser S.F. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes // J. Biol. Chem. 2017. V. 292. P. 11138–11146. https://doi.org/10.1074/jbc.R117.779678
  8. Krueger S.K., Williams D.E. Mammalian flavin-containing monooxygenases: Structure/function, genetic polymorphisms and role in drug metabolism // Pharmacol. Ther. 2005. V. 106. P. 357–387. https://doi.org/10.1016/j.pharmthera.2005.01.001
  9. Zhao Y., Christensen S.K., Fankhauser C. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis // Science. 2001. V. 291. P. 306–309. https://doi.org/10.1126/science.291.5502.306
  10. Won C., Shen X., Mashiguchi K. et al. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis // Proc. Natl Acad. Sci. USA. 2011. V. 108(45). P. 18518–18523. https://doi.org/10.1073/pnas.1108436108
  11. Hartmann M., Zeier T., Bernsdorff F. et al. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity // Cell. 2018. V. 173(2). P. 456–469. https://doi.org/10.1016/j.cell.2018.02.049
  12. Halkier B.A., Gershenzon J. Biology and biochemistry of glucosinolates // Annu. Rev. Plant Biol. 2006. V. 57. P. 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  13. Kong W., Li J., Yu Q. et al. Two novel flavin-containing monooxygenases involved in biosynthesis of aliphatic glucosinolates // Front. Plant Sci. 2016. V. 7. Article 1292. https://doi.org/10.3389/fpls.2016.01292
  14. Yoshimoto N., Onuma M., Mizuno S. et al. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic // Plant J. 2015. V. 83. P. 941–951. https://doi.org/10.1111/tpj.12954
  15. Yoshimoto N., Saito K. S-Alk(en)ylcysteine sulfoxides in the genus Allium: Proposed biosynthesis, chemical conversion, and bioactivities // J. Exp. Bot. 2019. V. 70. P. 4123–4137. https://doi.org/10.1093/jxb/erz243
  16. Mishina T.E., Zeier J. The Arabidopsis flavin-dependent monooxygenase fmo1 is an essential component of biologically induced systemic acquired resistance // Plant Physiol. 2006. V. 141. P. 1666–1675. https://doi.org/10.1104/pp.106.081257
  17. Sun X., Zhu S., Li N. et al. A chromosome-level genome assembly of garlic (Allium sativum) provides insights into genome evolution and allicin biosynthesis // Mol. Plant. 2020. V. 13. P. 1328–1339. https://doi.org/10.1016/j.molp.2020.07.019
  18. Filyushin M.A., Anisimova O.K., Kochieva E.Z., Shchennikova A.V. Genome-wide identification and expression of chitinase class I genes in garlic (Allium sativum L.) cultivars resistant and susceptible to Fusarium proliferatum // Plants. 2021. V. 10. Article 720. https://doi.org/10.3390/plants10040720
  19. Анисимова О.К., Щенникова А.В., Кочиева Е.З., Филюшин М.А. Идентификация генов монодегидроаскорбатредуктаз (MDHAR) чеснока (Allium sativum L.) и их участие в ответе на заражение Fusarium proliferatum // Генетика. 2022. Т. 58. № 7. С. 754–764. https://doi.org/10.31857/S0016675822070037
  20. Anisimova O.K., Seredin T.M., Danilova O.A., Filyushin M.A. First report of Fusarium proliferatum causing garlic clove rot in Russian federation // Plant Dis. 2021. V. 105. P. 3308. https://doi.org/10.1094/PDIS-12-20-2743-PDN
  21. Tchórzewska D., Deryło K., Błaszczyk L., Winiarczyk K. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L. // Plant Reprod. 2015. V. 28. P. 171–182. https://doi.org/10.1007/s00497-015-0268-0
  22. Qin M., Wang J., Zhang T. et al. Genome-wide identification and analysis on YUCCA gene family in Isatis indigotica Fort. and IiYUCCA6-1 functional exploration // Int. J. Mol. Sci. 2020. V. 21. Article 2188. https://doi.org/10.3390/ijms21062188
  23. Hansen B.G., Kliebenstein D.J., Halkier B.A. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis // Plant J. 2007. V. 50. P. 902–910. https://doi.org/10.1111/j.1365-313X.2007.03101.x
  24. Eswaramoorthy S., Bonanno J.B., Burley S.K., Swaminathan S. Mechanism of action of a flavin-containing monooxygenase // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 9832–9837. https://doi.org/10.1073/pnas.0602398103
  25. Li R., Zhu F., Duan D. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15 // Plant Signal Behav. 2020. V. 15. Article 1773664. https://doi.org/10.1080/15592324.2020.1773664
  26. Nakashima K., Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development // Plant Cell Rep. 2013. V. 32. P. 959–970. https://doi.org/10.1007/s00299-013-1418-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (238KB)
3.

Download (852KB)
4.

Download (4MB)
5.

Download (439KB)
6.

Download (818KB)
7.

Download (2MB)
8.

Download (286KB)
9.

Download (381KB)
10.

Download (50KB)

Copyright (c) 2023 О.К. Анисимова, А.В. Щенникова, Е.З. Кочиева, М.А. Филюшин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies