DNA Repair Does Not Trigger Genetic Instability of Yeast Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependence of the delayed formation of colonies on the dose of ionizing radiation (gamma rays of 60Co, dose rate 10 Gy/min) was obtained for six strains of wild-type haploid and diploid yeast, capable of recovering from radiation damage and characterized by sigmoidal survival curves as well as for six haploid and diploid radiosensitive mutants defective in reparation and characterized by exponential survival curves. The delay in the formation of colonies by survival cells after irradiation is considered as a genetic instability display. It was shown that for all diploid strains, genetic instability reached 100% with an increase in the dose of ionizing radiation, regardless of the shape of survival curves and the cell ability to recover from radiation damage. Conversely, for all haploid strains, genetic instability was only close to 20%. In contrast to traditional concepts, these data indicate that the late formation of colonies by surviving yeast cells after irradiation is determined mainly by cell ploidy and does not depend on the shape of the dose-response curves and cell radiosensitivity. This means that DNA repair does not trigger genetic instability in yeast cells.

About the authors

E. S. Evstratova

National Medical Research Center for Radiology

Author for correspondence.
Email: ekevs7240@mail.ru
Russia, 249031, Kaluga region, Obninsk

V. G. Petin

Tsyb Medical Radiological Research Center – Branch of the National Medical Research Center for Radiology

Email: ekevs7240@mail.ru
Russia, 249031, Kaluga region, Obninsk

S. A. Geraskin

Russian Institute of Radiology and Agroecology

Email: ekevs7240@mail.ru
Russia, 249032, Kaluga region, Obninsk

References

  1. Chang W.P., Little J.B. Evidence that DNA double-strand break initiate the phenotype of delayed reproductive death in Chinese hamster ovary cells // Radiat. Res. 1992. V. 131. № 1. P. 53–59.
  2. Brosh R.M., Bohr V.A. Human premature aging, DNA repair and RecQ helicases // Nucl. Aci. Res. 2007. V. 35. № 22. P. 7527–7544. https://doi.org/10.1093/nar/gkm1008
  3. Degtyareva N.P., Chen L., Mieczkowski P. et al. Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae // Mol. Cell. Biol. 2008. V. 28. № 17. P. 5432–5445. https://doi.org/10.1128/MCB.00307-08
  4. Aggarwal M., Brosh R.M. Functional analysis of human DNA repair proteins important for aging and genomic stability using yeast genetics // DNA Repair (Amst). 2012. V. 11. № 4. P. 335–348. https://doi.org/10.1016/j.dnarep.2012.01.013
  5. Donigan K.A., Cerritelli S.M., McDonald J.P. et al. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae // DNA Repair (Amst). 2015. V. 35. № 1. P. 1–12. https://doi.org/10.1016/j.dnarep.2015.07.002
  6. Капульцевич Ю.Г., Корогодин В.И., Петин В.Г. Анализ радиобиологических реакций дрожжевых клеток. I. Кривые выживания и эффект дорастания // Радиобиология. 1972. Т. 12. № 2. С. 267–271.
  7. Корогодин В.И. Феномен жизни. Избранные труды. М.: Наука, 2010. Т. 1. 436 с.
  8. Петин В.Г., Белкина С.В., Жураковская Г.П. Математические модели и реакции клеток на облучение ионизирующими излучениями разного качества. М.: ГЕОС, 2020. 263 с.
  9. Евстратова Е.С., Хрячкова А.В., Жураковская Г.П. и др. УФ-индуцированная задержка формирования колоний дрожжевыми клетками // Рад. биология. Радиоэкология. 2018. Т. 58. № 3. С. 245–250. https://doi.org/10.7868/S0869803118030037
  10. Евстратова Е.С., Королев В.Г., Петин В.Г., Толкаева М.С. Выживаемость и генетическая нестабильность дрожжевых клеток разного генотипа после облучения УФ-светом // Рад. биология. Радиоэкология. 2021. Т. 61. № 6. С. 608–614. https://doi.org/10.31857/S0869803121060035
  11. Евстратова Е.С., Королев В.Г., Петин В.Г. Задержка образования колоний диплоидными клетками разного генотипа после облучения УФ-светом // Генетика. 2019. Т. 55. № 7. С. 832–836. https://doi.org/10.1134/S0016675819070063
  12. Saeki T., Machida I., Nakai S. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae // Mut. Res. 1980. V. 73. № 2. P. 251–265. https://doi.org/10.1016/0027-5107(80)90192-x
  13. Petin V.G., Ryabchenko V.I. A study of oxygen effect and radiosensitization of hypoxic cells by metronidazole in wild-type and radiosensitive mutants of yeast // Int. J. Radiat. Biol. 1982. V. 42. P. 491–500.
  14. Petin V.G. Influence of misonidazole on survival of wild-type and radiosensitive mutants of yeast // Mut. Res. 1983. V. 108. P. 121–131.
  15. Толсторуков И.И., Близник К.М., Корогодин В.И. Митотическая нестабильность диплоидных клеток дрожжей Pichia pinus. Сообщение I. Спонтанное расщепление // Генетика. 1979. Т. 15. № 12. С. 2140–2147.
  16. Chang W.P., Little J.B. Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: Association with delayed reproductive death phenotype // Mut. Res. 1992. V. 270. № 2. P. 191–199. https://doi.org/10.1016/0027-5107(92)90130-t
  17. Marder B.A., Morgan W.F. Delayed chromosomal instability induced by DNA damage // Mol. Cell. Biol. 1993. V. 13. № 11. P. 6667–6677. https://doi.org/10.1128/mcb.13.11.6667-6677.1993
  18. Korogodin V.I., Bliznik K.M., Kapultcevich Yu.G. et al. Cascade mutagenesis: Regularities and mechanisms // Proc. 2nd Int. N.W. Timofeef-Ressovsky Conference. Dubna: 2007. V. 1. P. 419–447.
  19. Корогодин, В.И., Близник К.М., Капульцевич Ю.Г., Петин В.Г. Оценка частоты митотической рекомбинации в клонах, вырастающих из облученных клеток // Радиобиология. 1974. Т. 14. № 5. С. 681–685.
  20. Sheltzer J.M., Blank H.M., Pfau S.J. et al. Aneuploidy drives genomic instability in yeast // Science. 2011. V. 333. № 6045. P. 1026–1030. https://doi.org/10.1126/science.1206412
  21. Urushibara A., Kodama S., Yokoya A. Induction of genetic instability by transfer of a UV-A-irradiated chromosome // Mut. Res. 2014. V. 766. № 1. P. 29–34. https://doi.org/10.1016/j.mrgentox.2014.02.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (103KB)

Copyright (c) 2023 Е.С. Евстратова, В.Г. Петин, С.А. Гераськин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies