Impact of Chromatin 3D-Organization on Promoter–Superenhancer Interactions in Embryonic Stem vs Cancer Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of enhancers and superenhancers (SE) with promoters is functionally significant for the regulation of gene expression. Pattern of these interactions plays a key role in various processes, such as differentiation, malignant transformation, etc. In order to quantify the relationship between 3D chromatin organization and promoter–SE contacts, a computational analysis of chromatin conformations near the murine Nanog pluripotency gene was performed for normal embryonic stem (mESC) and lymphoma (CH12LX) cells. Using biophysical modeling approach, the following parameters of the promoter–SE interactions were identified: the distribution of distances between the Nanog promoter and the SEs, the frequency of contacts with one and several SEs simultaneously. In normal mESC expressing Nanog, the frequency of contacts of promoters with SEs is higher than in cancer cells, and complex contacts with two or more SEs are more frequent. The modelling reveals a small subpopulation of cancer cells, where the promoter contacts simultaneously three SEs. The predicted subpopulation of cancer cells with multiple promoter–SE contacts may be predisposed to increased stemness and hypothetically be considered as a reservoir for generation of cancer stem cells.

About the authors

Yu. A. Eidelman

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; National Research Nuclear University “MEPHI”

Author for correspondence.
Email: eidel@mail.ru
Russia, 119334, Moscow; Russia, 115409, Moscow

S. G. Andreev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; National Research Nuclear University “MEPHI”

Author for correspondence.
Email: andreev_sg@mail.ru
Russia, 119334, Moscow; Russia, 115409, Moscow

References

  1. Hnisz D., Abraham B.J., Lee T.I. et al. Super-enhancers in the control of cell identity and disease // Cell. 2013. V. 155. № 4. P. 934–947. https://doi.org/10.1016/j.cell.2013.09.053
  2. Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation // Science. 2002. V. 295. № 5558. P. 1306–1311.https://doi.org/10.1126/science.1067799
  3. Lieberman-Aiden E., van Berkum N.L., Williams L. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome // Science. 2009. V. 326. № 5950. P. 289–293. https://doi.org/10.1126/science.1181369
  4. Zhang B., Wolynes P.G. Topology, structures, and energy landscapes of human chromosomes // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 19. P. 6062–6067. https://doi.org/10.1073/pnas.1506257112
  5. Eidelman Y., Salnikov I., Slanina S., Andreev S. Chromosome folding promotes intrachromosomal aberrations under radiation- and nuclease-induced DNA breakage // Int. J. Mol. Sci. 2021. V. 22. № 22. P. 12186. https://doi.org/10.3390/ijms222212186
  6. Beagrie R.A., Scialdone A., Schueler M. et al. Complex multi-enhancer contacts captured by genome architecture mapping // Nature. 2017. V. 543. № 7646. P. 519–524. https://doi.org/10.1038/nature21411
  7. Giorgetti L., Galupa R., Nora E.P. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription // Cell. 2014. V. 157. № 4. P. 950–963. https://doi.org/10.1016/j.cell.2014.03.025
  8. Annunziatella C., Chiariello A.M., Bianco S., Nicodemi M. Polymer models of the hierarchical folding of the Hox-B chromosomal locus // Phys. Rev. E. 2016. V. 94. № 4-1. P. 042402. https://doi.org/10.1103/PhysRevE.94.042402
  9. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome // Nature. 2012. V. 489. № 7414. P. 57–74. https://doi.org/10.1038/nature11247
  10. Anders S., Pyl P.T., Huber W. HTSeq – a Python framework to work with high-throughput sequencing data // Bioinformatics. 2015. V. 31. № 2. P. 166–169. https://doi.org/10.1093/bioinformatics/btu638
  11. Dixon J.R., Selvaraj S., Yue F. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions // Nature. 2012. V. 485. № 7398. P. 376–380. https://doi.org/10.1038/nature11082
  12. Rao S.S.P., Huntley M.H., Durand N.C. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping // Cell. 2014. V. 159. № 7. P. 1665–1680. https://doi.org/10.1016/j.cell.2014.11.021
  13. Novo C.L., Javierre B.-M., Cairns J. et al. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition // Cell Rep. 2018. V. 22. № 10. P. 2615–2627. https://doi.org/10.1016/j.celrep.2018.02.040
  14. Whyte W.A., Orlando D.A., Hnisz D. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes // Cell. 2013. V. 153. № 2. P. 307–319. https://doi.org/10.1016/j.cell.2013.03.035
  15. Ron G., Globerson Y., Moran D., Kaplan T. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains // Nat. Commun. 2017. V. 8. № 1. P. 2237. https://doi.org/10.1038/s41467-017-02386-3
  16. Liu L., Kim M.H., Hyeon C. Heterogeneous loop model to infer 3D chromosome structures from Hi-C // Biophys. J. 2019. V. 117. № 3. P. 613–625. https://doi.org/10.1016/j.bpj.2019.06.032
  17. Wang M.-L., Chiou S.-H., Wu C.-W. Targeting cancer stem cells: emerging role of Nanog transcription factor // Onco. Targets Ther. 2013. V. 6. P. 1207–1220. https://doi.org/10.2147/OTT.S38114
  18. Schoenfelder S., Fraser P. Long-range enhancer-promoter contacts in gene expression control // Nat. Rev. Genet. 2019. V. 20. № 8. P. 437–455. https://doi.org/10.1038/s41576-019-0128-0
  19. Finn E.H., Mistely T. Molecular basis and biological function of variability in spatial genome organization // Science. 2019. V. 365. № 6457. P. eaaw9498. https://doi.org/10.1126/science.aaw9498
  20. Sood V., Misteli T. The stochastic nature of genome organization and function // Curr. Opin. Genet. Dev. 2022. V. 72. P. 45–52. https://doi.org/10.1016/j.gde.2021.10.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (353KB)
4.

Download (113KB)
5.

Download (568KB)

Copyright (c) 2023 Ю.А. Эйдельман, С.Г. Андреев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies