Antocyanidin-3-O-Glucosyltransferase Genes in Pepper (Capsicum spp.) and Their Role in Anthocyanine Biosynthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In pepper (Capsicum spp.), anthocyanins are important not only for the photolabile compounds protection, but also for the regulation of fruit color pattern. Anthocyanidin-3-O-glucosyltransferases (UFGTs) play a key role in the biosynthesis of stable anthocyanins. In this work, the structure and phylogeny of three pepper UFGT homologue genes are characterized. Biochemical analysis of C. annuum cultivars (cv. Syrenevii cube, Othello and Sibiryak) and C. frutescens (cv. Samotsvet), which differ in the pattern of fruit pigmentation during ripening, showed the presence of anthocyanins in leaves and fruit peel of all accessions (except for the cv. Sibiryak fruit). The highest anthocyanins content was found in the purple leaves of the cv. Samotsvet. In the fruit peel of all accessions, the anthocyanins content decreased with ripening. Expression analysis of the same tissues showed that UFGT1 (LOC107843659) and UFGT2 (LOC107843660) transcripts are present in the leaves of all cultivars. In the fruit peel, UFGT1 transcripts were detected at maturation stages 1 (cv. Syrenevii cube and Othello) and 1–3 (cv. Samotsvet), while UFGT2 transcripts were found in all accessions with the maximum in the cv. Sibiryak, where anthocyanins were absent. Transcripts of the MBW complex (anthocyanin2, MYC, and WD40), which regulates the biosynthesis of anthocyanins, were present in the leaves of all cultivars with a maximum in the purple leaves of the cv. Samotsvet. Comparison of biochemical and expression data revealed a positive correlation between the amount of anthocyanins in fruit peel and leaves and UFGT1 expression level. For UFGT2 such correlation was no found. Analysis of UFGT1 sequence, including the promoter region, in 18 pepper cultivars that differ in fruit color pattern, revealed sequence invariance, regardless of the color of the immature fruit. Analysis of the UFGT1 and UFGT2 promoter sequences of the showed differences in the composition of cis-regulatory elements involved in response to stress and hormones, and in MYB and MYC transcription factors binding sites.

About the authors

M. A. Filyushin

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: michel7753@mail.ru
Russia, 119071, Moscow

A. V. Shchennikova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: michel7753@mail.ru
Russia, 119071, Moscow

E. Z. Kochieva

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: michel7753@mail.ru
Russia, 119071, Moscow

References

  1. Mateos R.M., Jiménez A., Román P. et al. Antioxidant systems from pepper (Capsicum annuum L.): Involvement in the response to temperature changes in ripe fruits // Int. J. Mol. Sci. 2013. V.14. P. 9556–9580 https://doi.org/10.3390/ijms14059556
  2. Moscone E.A., Scaldaferro M.A., Grabiele M. et al. The evolution of chili peppers (Capsicum – Solanaceae): A cytogenetic perspective // Acta Hortic. 2007. V. 745. P. 137–170. https://doi.org/10.17660/ActaHortic.2007.745.5
  3. García C.C., Barfuss M.H., Sehr E.M. et al. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae) // Ann. Bot. 2016. V. 118. № 1. P. 35–51. https://doi.org/10.1093/aob/mcw079
  4. Borovsky Y., Oren-Shamir M., Ovadia R. et al. The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia // Theor. Appl. Genet. 2004. V. 109. P. 23–29. https://doi.org/10.1007/s00122-004-1625-9
  5. Aza-González C., Herrera-Isidrón L., Núñez-Palenius H.G. et al. Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development // Biol. Plant. 2013. V. 57. P. 49–55. https://doi.org/10.1007/s10535-012-0265-1
  6. Филюшин М.А., Джос Е.А., Щенникова А.В., Кочиева Е.З. Зависимость окраски плодов перца от соотношения основных пигментов и профиля экспрессии генов биосинтеза каротиноидов и антоцианов // Физиол. растений. 2020. Т. 67. С. 644–653. https://doi.org/10.31857/S0015330320050048
  7. Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids // Plant J. 2008. V. 54. P. 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
  8. Ma Y., Ma X., Gao X. et al. Light induced regulation pathway of anthocyanin biosynthesis in plants // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms222011116
  9. Naing A.H., Kim C.K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants // Plant Mol. Biol. 2018. V. 98. P. 1–18. https://doi.org/10.1007/s11103-018-0771-4
  10. Zhao Z.C., Hu G.B., Hu F.C. et al. The UDP glucose: Flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration // Mol. Biol. Rep. 2012. V. 6. P. 6409–6415.
  11. Liu Y., Tikunov Y., Schouten R.E. et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review // Front. Chem. 2018. V. 6. https://doi.org/10.3389/fchem.2018.00052
  12. Villa-Rivera M.G., Ochoa-Alejo N. Transcriptional regulation of ripening in chili pepper fruits (Capsicum spp.) // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms222212151
  13. Филюшин М.А., Джос Е.А., Щенникова А.В., Кочиева Е.З. Особенности экспрессии гена фактора транскрипции anthocyanin2 и его влияния на содержание антоцианов у образцов Capsicum chinense Jacq. с различной окраской плода // Генетика. 2020. Т. 56. С. 1161–1170. https://doi.org/10.31857/S0016675820090064
  14. Wang Y., Liu S., Wang H. et al. Identification of the regulatory genes of UV-B-induced anthocyanin biosynthesis in pepper fruit // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms23041960
  15. Liu J., Ai X., Wang Y. et al. Fine mapping of the Ca3GT gene controlling anthocyanin biosynthesis in mature unripe fruit of Capsicum annuum L. // Theor. Appl. Genet. 2020. V. 133(9). P. 2729–2742. https://doi.org/10.1007/s00122-020-03628-7
  16. Kobayashi S., Yamamoto N.G., Hirochika H. Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin – color mutants // J. Jpn. Soc. Hortic. Sci. 2005. V. 74. P. 196–203.
  17. Solovchenko A.E., Chivkunova O.B., Merzlyak M.N., Reshetnikova I.V. A spectrophotometric analysis of pigments in apples // Rus. J. Plant Phys. 2001. V. 48. № 5. P. 693–700.
  18. Cappellini F., Marinelli A., Toccaceli M. et al. Anthocyanins: From mechanisms of regulation in plants to health benefits in foods // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.748049
  19. Cui Z.H., Bi W.L., Hao X.Y. et al. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves // Plant Dis. 2017. V. 101(9). P. 1606–1615. https://doi.org/10.1094/PDIS-01-17-0104-RE
  20. Sicilia A., Catara V., Scialò E., Lo Piero A.R. Fungal infection induces anthocyanin biosynthesis and changes in DNA methylation configuration of blood orange [Citrus sinensis L. (Osbeck)] // Plants (Basel). 2021. V. 10(2). https://doi.org/10.3390/plants10020244
  21. Gutha L.R., Casassa L.F., Harbertson J.F., Naidu R.A. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves // BMC Plant Biol. 2010. V. 10. https://doi.org/10.1186/1471-2229-10-187

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (407KB)
3.

Download (1MB)
4.

Download (168KB)
5.

Download (180KB)
6.

Download (120KB)
7.

Download (141KB)

Copyright (c) 2023 М.А. Филюшин, А.В. Щенникова, Е.З. Кочиева

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».