Study of the Genotoxicity of Beta-Propiolactone Using E. coli lux Biosensors and Nematode Caenorhabditis elegans

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, lux biosensors of E. coli and the nematode Caenorhabditis elegans were used to study the genotoxicity of beta-propiolactone (BPL) used in the production of inactivated viral vaccines as an inactivator. It has been shown that the DNA-damaging activity of BPL is due not only to its ability to bind to bacterial DNA, but also to the ability to generate in the cell such reactive oxygen species as superoxide anion and peroxide, which have genotoxic activity. It was found that BPL in a dose-dependent manner, starting from a concentration of 0.001 mol/L, reduces the survival of bacteria. However, the intensity of expression of the antioxidant defense gene of superoxide dismutase soxS and the DNA repair gene colD increased. BPL induced DNA breaks in nematode cells detected by electrophoresis. The antioxidant acetylcysteine (ACC) reduced the genotoxic effects of BPL on both bacteria and nematode.

About the authors

E. A. Machigov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: abilev@vigg.ru
Russia, 119991, Moscow

S. K. Abilev

Vavilov Institute of General Genetics of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: abilev@vigg.ru
Russia, 119991, Moscow; Russia, 119234, Moscow

E. V. Igonina

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: abilev@vigg.ru
Russia, 119991, Moscow

M. V. Marsova

Lomonosov Moscow State University

Email: abilev@vigg.ru
Russia, 119234, Moscow

References

  1. Sanders B., Koldijk M., Schuitemaker H. Inactivated viral vaccines // Vaccine Analysis: Strategies, Principles, and Control. Berlin, Heidelberg: Springer, 2015. P. 45–80.
  2. Lawrence S.A. Beta-Propiolactone: Viral inactivation in vaccines and plasma products. // PDA J. Pharm Sci. and Technol. 2000. V. 54. P. 209–214.
  3. Курашова С.С., Ишмухаметов А.А., Егорова М.С. и др. Сравнительная характеристика инактивирующих агентов для создания вакцины против геморрагической лихорадки с почечным синдромом // Эпидемиология и вакцинопрофилактика. 2018. Т. 17. № 4. С. 26–29. https://doi.org/10.31631/2073-3046-2018-17-4-26-29
  4. Colburn N.H., Richardson R.G., Boutwell R.K. Studies of the reaction of β-propiolactone with deoxyguanosine and related compounds // Biochem. Pharmacol. 1965. V. 14. P. 1113–1118.
  5. β-Propiolactone // IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lion: 1999. V. 71. P. 1103–1118.
  6. Perrin P., Morgeaux S. Inactivation of DNA by β-propiolactone // Biologicals. 1995. V. 23. P. 207–211.
  7. Taubman M.A., Atassi M.Z. Reaction of beta-propiolactone with aminoacids and its specificity for methionine // Biochem J. 1968. V. 106. P. 829–834. https://doi.org/10.1042/bj1060829
  8. Lawley P.D., Brookes P. Further studies on the alkylation nucleic acids and their constituent nucleotides // Biochem. J. 1963. V. 89. P. 127–138. https://doi.org/10.1042/bj0890127
  9. Penman B.W., Hoppe H., Thilly W.G. Concentration-dependent mutation by alkylating agents in human lymphoblasts and Salmonella typhimurium: N-methyl-N-nitrosourethane and beta-propiolactone // J. Natl Cancer. Inst. 1979. V. 63. P. 903–907.
  10. Kortselius M.J. Induction of sex-linked recessive lethals and autosomal translocations by beta-propiolactone in Drosophila: Influence of the route of administration on mutagenic activity // Mut. Res. 1979. V. 66. P. 55–63. https://doi.org/10.1016/0165-1218(79)90007-7
  11. Shamberger R.J., Corlett C.L., Beaman D., Kasten B.L. Antioxidants reduce the mutagenic effect of malonaldehyde and beta-propiolactone. Part IX. Antioxidants and cancer // Mut. Res. 1979. V. 66. P. 349–355. https://doi.org/10.1016/0165-1218(79)90045-4
  12. Benning V., Brault D., Duvinage C. et al. Validation of the in vivo CD1 mouse splenocyte micronucleus test // Mutagenesis. 1994. V. 9. P. 199–204. https://doi.org/10.1093/mutage/9.3.199
  13. Klein C.B., Rossman T.G. Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis // Envir. Mol. Mutagen. 1990. V. 16. P. 1–12. https://doi.org/10.1002/em.2850160102
  14. Brusick D. The genetic properties of β-propiolactone // Mut. Res. 1976. V. 39. P. 241–255.
  15. Santaló J., Estop A.M., Egozcue J. Genotoxic effect of beta-propiolactone on mammalian oocytes // Mut. Res. 1987. V. 189. P. 407–416. https://doi.org/10.1016/0165-1218(87)90050-4
  16. Brault D., Renault D., Tombolan F., Thybaud V. Kinetics of induction of DNA damage and lacZ gene mutations in stomach mucosa of mice treated with beta-propiolactone and N-methyl-N'-nitro-N-nitrosoguanidine, using single-cell gel electrophoresis and MutaMouse models // Envir. Mol. Mut. 1999. V. 34. P. 182–189.
  17. Snyder C.A., Garte S.J., Sellakumar A.R., Albert R.E. Relationships between the levels of binding to DNA and the carcinogenic potencies in rat nasal mucosa for three alkylating agents // Cancer Lett. 1986. V. 33. P. 175–181. https://doi.org/10.1016/0304-3835(86)90022-4
  18. Котова В.Ю., Манухов И.В., Завильгельский Г.Б. Lux-биосенсоры для детекции SOS-ответа, теплового шока и окислительного стресса // Биотехнология. 2009. № 6. С. 16–25. https://doi.org/10.1134/S0003683810080089
  19. Завильгельский Г.Б., Котова В.Ю., Манухов И.В. Сенсорные биолюминесцентные системы на основе lux-оперонов для детекции токсичных веществ // Хим. физика. 2012. Т. 31. № 10. С. 15–20.
  20. Meneely P.M., Dahlberg C.L., Rose J.K. Working with worms: Caenorhabditis elegans as a model organism // Curr. Protocols Essential Lab. Techniques. 2019. V. 19. P. e35. https://doi.org/10.1002/cpet.35
  21. Imanikia S., Galea F., Nagy E. et al. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans // Envir. Toxicol. Pharmacol. 2016. V. 7(45). P. 356–361. Epub 2016 Jun 20.https://doi.org/10.1016/j.etap.2016.06.020
  22. Завильгельский Г.Б. SOS-репарации 60 лет // Мол. биология. 2013. Т. 47. № 5. С. 699–706. https://doi.org/10.7868/S0026898413050224
  23. Maslowska K.H., Makiela Dzbenska K., Fijalkowska I.J. The SOS system: A complex and tightly regulated response to DNA damage // Envir. Mol. Mutagenesis. 2019. V. 60. № 4. P. 368–384. https://doi.org/10.1002/em.22267
  24. Baharoglu Z., Mazel D. SOS, the formidable strategy of bacteria against aggressions // FEMS Microbiol. Rev. 2014. V. 38. № 6. P. 1126–1145. https://doi.org/10.1002/em.22267
  25. Sedgwick B., Batesb P.A., Paik J. et al. Repair of alkylated DNA: Recent advances // DNA Repair. 2007. V. 6. № 4. P. 429–442.
  26. Mielecki D., Grzesiuk E. Ada response – a strategy for repair of alkylated DNA in bacteria, FEMS // Microbiol. Lett. 2014. V. 355. № 1. P. 1–11. https://doi.org/10.1111/1574-6968
  27. Mielecki D., Wrzesiński M., Grzesiuk E. Inducible repair of alkylated DNA in microorganisms // Mut. Res. 2015. V. 763. P. 294–305. https://doi.org/10.1016/j.mrrev.2014.12.001
  28. Орджоникидзе К.Г., Игонина Е.В., Жошибекова Б.С., Абилев С.К. Сравнительное изучение ДНК-повреждающей активности эпихлоргидрина с помощью биосенсоров Escherichia coli и методом ДНК-комет на мышах // Генетика. 2021. Т. 57. № 9. С. 1031–1038. https://doi.org/10.31857/S0016675821090083
  29. Мачигов Э.А., Игонина Е.В., Свиридова Д.А. и др. Изучение токсичности и генотоксичности параквата для бактерий помощью lux-биосенсоров Escherichia coli // Рад. биология. Радиоэкология. 2022. Т. 62. № 3. С. 240–249. https://doi.org/10.31857/S0869803122030055
  30. Свиридова Э.А., Мачигов Е.В., Игонина и др. Изучение механизма генотоксичности диоксидина с помощью lux-биосенсоров Esсherichia coli // Рад. биология. Радиоэкология. 2020. Т. 60. № 6. С. 595–603. https://doi.org/10.31857/S0869803120060223
  31. Hartman J.H., Widmayer S.J., Christina M. et al. Xenobiotic metabolism and transport in Caenorhabditis elegans // J. Toxicol. Envir. Health. 2021. Part B. V. 24(2). P. 51–94. https://doi.org/10.1080/10937404.2021.1884921
  32. Harlow P.H., Perry S.J., Alexander J. et al. Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans // Nat. Sci. Reports. 2018. V. 8. P. 13333. https://doi.org/10.1038/ s41598-018-31215-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (58KB)
4.

Download (623KB)
5.

Download (636KB)
6.

Download (556KB)

Copyright (c) 2023 Э.А. Мачигов, С.К. Абилев, Е.В. Игонина, М.В. Марсова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies