A New 5'-UTR LcyE allele Correlates with Increased Expression of the Lycopine-ε-Cyclase Gene Determining the Flow of the β-ε Branch of the Carotenoid Biosynthesis Pathway in Maize

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The color of Zea mays L. kernel is determined by the content and composition of carotenoids, including provitamin A, which is a product of the β-β (β-carotene, β-cryptoxanthin) and β-ε (α-carotene) branches of carotenogenesis. The ratio of the fluxes of the branches depends on the activity of the lycopene-ε-cyclase LcyE, which determines the β-ɛ branch. In this work, we analyzed allelic variants of the LcyE gene, which are potentially effective for increasing the biosynthesis of β-carotene, in 20 maize inbred lines of domestic selection, which differ in grain color. The 5'-UTR region of the LcyE gene were amplified and sequenced. Fragment analysis showed the presence of allele “2” in four lines and a new allele “5” in 16 lines. The polymorphism of the new allele “5” was characterized – four mononucleotide polymorphisms and two deletions. The comparison of cis-regulatory elements in the analyzed region of the 5'-UTR of alleles “2” and “5” revealed a difference in binding sites with transcription factors. Expression of the LcyE gene was determined in the leaves of two lines with the allele “2” and three lines with the allele “5”. A direct relationship was shown between the presence of the allele “5” and a decrease in gene expression: the level of gene transcription in the case of the allele “2” was 10–15 times higher than in the case of the allele “5”. It has been suggested that the presence of allele “5” of the LcyE gene in the maize genome correlates with a decrease or suppression of the LcyE expression and, with stable activity of other carotenogenesis enzymes, with grain color. The use of allele “5” donors in combination with the known dark yellow or orange color of the grain can be used in the breeding of maize with increased synthesis of provitamin A in the grain.

About the authors

D. H. Arkhestova

Institute of Bioengineering, Federal Research Center Fundamentals
of Biotechnology, Russian Academy of Sciences; Institute of Agriculture – a Branch of the Kabardino-Balkarian Scientific
Center of the Russian Academy of Sciences

Email: gleb_efremov@mail.ru
Russia, 119071, Moscow; Russia, 360004, Nalchik

G. I. Efremov

Institute of Bioengineering, Federal Research Center Fundamentals
of Biotechnology, Russian Academy of Sciences

Author for correspondence.
Email: gleb_efremov@mail.ru
Russia, 119071, Moscow

S. P. Appaev

Institute of Agriculture – a Branch of the Kabardino-Balkarian Scientific
Center of the Russian Academy of Sciences

Email: gleb_efremov@mail.ru
Russia, 360004, Nalchik

E. Z. Kochieva

Institute of Bioengineering, Federal Research Center Fundamentals
of Biotechnology, Russian Academy of Sciences

Email: gleb_efremov@mail.ru
Russia, 119071, Moscow

A. V. Shchennikova

Institute of Bioengineering, Federal Research Center Fundamentals
of Biotechnology, Russian Academy of Sciences

Email: gleb_efremov@mail.ru
Russia, 119071, Moscow

References

  1. Harjes C.E., Rocheford T.R., Bai L. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification // Science. 2008. V. 319. P. 330–333. https://doi.org/10.1126/science.1150255
  2. Kurilich A.C., Juvik J.A. Quantification of carotenoid and tocopherol antioxidants in Zea mays // J. Agric. Food Chem. 1999. V. 47. P. 1948–1955. https://doi.org/10.1021/jf981029d
  3. O’Hare T.J., Martin I., Fanning K.J. et al. Sweetcorn colour change and consumer perception associated with increasing zeaxanthin for the amelioration of age-related macular degeneration // Acta Horticulturae. 2014. V. 1040. P. 221–226. https://doi.org/10.17660/ActaHortic.2014.1040.30
  4. Yadav O.P., Hossain F., Karjagi C.G. et al. Genetic improvement of maize in India: Retrospect and prospects // Agric. Res. 2015. V. 4. № 4. P. 325–338. https://doi.org/10.1007/s40003-015-0180-8
  5. Zunjare R.U., Chhabra R., Hossain F. et al. Molecular characterization of 5'-UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification // 3 Biotech. 2018. V. 8. № 1. Р. 75. https://doi.org/10.1007/s13205-018-1100-y
  6. Cunningham F.X., Jr., Pogson B., Sun Z. et al. Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation // Plant Cell. 1996. V. 8. P. 1613–1626. https://doi.org/10.1105/tpc.8.9.1613
  7. Rosas-Saavedra C., Stange C. Biosynthesis of carotenoids in plants: Enzymes and color // Subcell Biochem. 2016. V. 79. P. 35–69. https://doi.org/10.1007/978-3-319-39126-7_2
  8. Wong J.C., Lambert R.J., Wurtzel E.T., Rocheford T.R. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize // Theor. Appl. Genet. 2004. V. 108. № 2. P. 349–359. https://doi.org/10.1007/s00122-003-1436-4
  9. Krinsky N.I., Johnson E.J. Carotenoid actions and their relation to health and disease // Mol. Aspects of Med. 2005. V. 26. № 6. P. 459–516. https://doi.org/10.1016/j.mam.2005.10.001
  10. Nagao A., Olson J.A. Enzymatic formation of 9-cis, 13-cis, and all-trans retinals from isomers of beta-carotene // Faseb J. 1994. V. 8. № 12. P. 968–973. https://doi.org/10.1096/fasebj.8.12.8088462
  11. Babu R., Rojas N.P., Gao S. et al. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations // Theor. Appl. Genet. 2013. V. 126. P. 389–399. https://doi.org/10.1007/s00122-012-1987-3
  12. Baveja A., Muthusamy V., Panda K.K. et al. Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes // J. Appl. Genet. 2021. V. 62. № 3. P. 419–429. https://doi.org/10.1007/s13353-021-00633-4
  13. Bai L., Kim E.H., DellaPenna D., Brutnell T.P. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis // Plant J. 2009. V. 59. № 4. P. 588–599. https://doi.org/10.1111/j.1365-313X.2009.03899.x
  14. Yu B., Lydiate D.J., Young L.W. et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase // Transgenic Res. 2008. V. 17. № 4. P. 573–585. https://doi.org/10.1007/s11248-007-9131-x
  15. Diretto G., Tavazza R., Welsch R. et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase // BMC Plant Biol. 2006. V. 6. Р. 13. https://doi.org/10.1186/1471-2229-6-6
  16. Pogson B.J., Rissler H.M. Genetic manipulation of carotenoid biosynthesis and photoprotection // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000. V. 355. № 1402. P. 1395–1403. https://doi.org/10.1098/rstb.2000.0701
  17. Richaud D., Stange C., Gadaleta A. et al. Identification of lycopene epsilon cyclase (lcyE) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L. ssp. durum) through TILLING // PLoS One. 2018. V. 13. № 12: e0208948. https://doi.org/10.1371/journal.pone.0208948
  18. Yan J., Kandianis B.C., Harjes E.C. et al. Rare genetic variation at Zea mays crtRB1 increases beta carotene in maize grain // Nat. Genet. 2010. V. 42. P. 322–327. https://doi.org/10.1038/ng.551
  19. Liu L., Jeffers D., Zhang Y. et al. Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers // Mol. Breed. 2015. V. 35. № 8: 154. https://doi.org/10.1007/s11032-015-0349-7
  20. Muthusamy V., Hossain F., Thirunavukkarasu N. et al. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele // PLoS One. 2014. V. 9. № 12. Р. e11583. https://doi.org/10.1371/journal.pone.0113583
  21. Дьяченко Е.А., Слугина М.А. Внутривидовой полиморфизм гена сахарозосинтазы Sus1 у образцов Pisum sativum L. // Вавилов. журн. генет. и селекции. 2018. Т. 22. № 1. С. 108–114. https://doi.org/10.18699/VJ18.338
  22. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. № 7. P. 1870–1874. https://doi.org/10.1093/molbev/msw054
  23. Lescot M. PlantCARE, a database of plant cis – acting regulatory elements and a portal to tools for in silico analysis of promoter sequences // Nucl. Ac. Res. 2002. V. 30. P. 325–327. https://doi.org/10.1093/nar/30.1.325
  24. Li F., Vallabhaneni R., Wurtzel E.T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress – induced root carotenogenesis // Plant Physiol. 2008. V. 146. P. 1333–1345. https://doi.org/10.1104/pp.107.111120
  25. Dibari B., Murat F., Chosson A. et al. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses // BMC Genomics. 2012. V. 13. Р. 221. https://doi.org/10.1186/1471-2164-13-221
  26. Vatov E., Ludewig U., Zentgraf U. Disparate dynamics of gene body and cis-regulatory element evolution illustrated for the senescence-associated cysteine protease gene SAG12 of plants // Plants (Basel). 2021. V. 10. № 7: 1380. https://doi.org/10.3390/plants10071380
  27. Bai J.F., Wang Y.K., Guo L.P. et al. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.) // BMC Genomics. 2019. V. 20. № 1. Article 1032. https://doi.org/10.1186/s12864-019-6373-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (151KB)
3.

Download (1MB)

Copyright (c) 2023 Д.Х. Архестова, Г.И. Ефремов, С.П. Аппаев, Е.З. Кочиева, А.В. Щенникова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies