Regulatory Potential of Non-Coding RNAs Colocalized with Cardiomyopathy-Related Genes
- Authors: Kucher A.N.1, Nazarenko M.S.1
-
Affiliations:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 59, No 4 (2023)
- Pages: 381-402
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/134574
- DOI: https://doi.org/10.31857/S0016675823040057
- EDN: https://elibrary.ru/AVMKVQ
- ID: 134574
Cite item
Abstract
Non-coding RNAs (ncRNAs) play an important role in the regulation of the activity of genes essential for the development and function of the cardiovascular system. Intragenic ncRNAs have been shown to be coordinately regulated and/or expressed with their host genes, including ncRNAs resided within cardiomyopathy (CMP)-related genes. This review summarizes the results of CMP-related intragenic ncRNA studies in the function of the healthy heart and in the development of different forms of CMPs. CMP-related intragenic ncRNAs such as miRNAs (miR-1, miR-133a, miR-208a, miR-208b, miR-324, miR-490, miR-499a) and long ncRNAs (MHRT, TTN-AS1 and KCNQ1OT1) are actively involved in research. It has been established that the level of these of ncRNAs in myocardium is characterized by developmental-stage-specific dynamics, gender-specific and chamber-specific patterns. These ncRNAs exhibit differential expression in myocardium/serum of humans and model animals under the influence of exogenous and endogenous factors. The expression levels of these ncRNAs in the myocardium/serum is associated with clinical features during the development and progression of CMPs. The change in the level of ncRNAs preceding clinical manifestation of CMPs have been reported. The possibility to arrest the development of CMPs and even the restoration of the normal phenotype by controlling the levels of these regulatory molecules indicate their involvement in the pathogenesis of the disease. miRNAs and long ncRNAs, whose genes resided within CMP-related genes, are involved in various metabolic processes that are important for the heart function, including their involvement in epigenetic processes.
About the authors
A. N. Kucher
Research Institute of Medical Genetics, Tomsk National Research Medical Centerof the Russian Academy of Sciences
Email: maria.nazarenko@medgenetics.ru
Russia, 634050, Tomsk
M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Centerof the Russian Academy of Sciences
Author for correspondence.
Email: maria.nazarenko@medgenetics.ru
Russia, 634050, Tomsk
References
- Zhou H., Wang B., Yang Y.X. et al. Long noncoding RNAs in pathological cardiac remodeling: A review of the update literature // Biomed. Res. Int. 2019. V. 2019. P. 7159592. https://doi.org/10.1155/2019/7159592
- Mushtaq I., Ishtiaq A., Ali T. et al. An overview of non-coding RNAs and cardiovascular system // Adv. Exp. Med. Biol. 2020. V. 1229. P. 3–45. https://doi.org/10.1007/978-981-15-1671-9_1
- Tang Y., Bao J., Hu J. et al. Circular RNA in cardiovascular disease: expression, mechanisms and clinical prospects // J. Cell. Mol. Med. 2021. V. 25. № 4. P. 1817–1824. https://doi.org/10.1111/jcmm.16203
- Qin X., Huang L., Chen S. et al. Multi-factor regulatory network and different clusters in hypertrophic obstructive cardiomyopathy // BMC Med. Genomics. 2021. V. 14. № 1. P. 199. https://doi.org/10.1186/s12920-021-01036-4
- Chiti E., Paolo M.D., Turillazzi E., Rocchi A. MicroRNAs in hypertrophic, arrhythmogenic and dilated cardiomyopathy // Diagnostics (Basel). 2021. V. 11. № 9. P. 1720. https://doi.org/10.3390/diagnostics11091720
- Cao M., Luo H., Li D. et al. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases // Int. J. Cardiol. 2022. V. 353. P. 109–117. https://doi.org/10.1016/j.ijcard.2022.01.070
- Кучер А.Н., Назаренко М.С. Эпигенетика кардиомиопатий: модификации гистонов и метилирование ДНК // Генетика. 2023. Т. 59. № 3. С. 266–182.
- Li M., Duan L., Li Y., Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases // Life Sci. 2019. V. 233. P. 116440. https://doi.org/10.1016/j.lfs.2019.04.066
- Shahzadi S.K., Naidoo N., Alsheikh-Ali A. et al. Reconnoitering the role of long-noncoding RNAs in hypertrophic cardiomyopathy: A descriptive review // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9378. https://doi.org/10.3390/ijms22179378
- Meder B., Haas J., Sedaghat-Hamedani F. et al. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure // Circulation. 2017. V. 136. № 16. P. 1528–1544. https://doi.org/10.1161/CIRCULATIONAHA.117. 027355
- Cheedipudi S.M., Matkovich S.J., Coarfa C. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy // Circ. Res. 2019. V. 124. № 8. P. 1198–1213. https://doi.org/10.1161/CIRCRESAHA.118.314177
- Liu C.F., Abnousi A., Bazeley P. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy // J. Mol. Cell. Cardiol. 2020. V. 145. P. 30–42. https://doi.org/10.1016/j.yjmcc.2020.06.001
- Pei J., Schuldt M., Nagyova E. et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations // Clin. Epigenetics. 2021. V. 13. № 1. P. 61. https://doi.org/10.1186/s13148-021-01043-3
- Simple ClinVar [Electronic resource]. URL: https://simple-clinvar.broadinstitute.org/ Accessed 03.2022.
- Pérez-Palma E., Gramm M., Nürnberg P. et al. Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database // Nucl. Acids Res. 2019. V. 47. № W1. P. W99–W105. https://doi.org/10.1093/nar/gkz411
- ClinGen [Electronic resource]. URL: https://clinicalgenome.org/ Accessed 05.2022.
- miRBase: the microRNA database. [Electronic resource]. URL: https://www.mirbase.org/ Accessed 04.2022.
- RNAcentral: The non-coding RNA sequence database. [Electronic resource]. URL: https://rnacentral.org/ Accessed 04.2022.
- GeneCards®: The Human Gene Database [Electronic resource]. URL: https://www.genecards.org/ Accessed 04.2022.
- Khan M.A., Reckman Y.J., Aufiero S. et al. RBM20 Regulates circular RNA production from the titin gene // Circ. Res. 2016. V. 119. № 9. P. 996–1003. https://doi.org/10.1161/CIRCRESAHA.116.309568
- Dong K., He X., Su H. et al. Genomic analysis of circular RNAs in heart // BMC Med. Genomics. 2020. V. 13. № 1. P. 167. https://doi.org/10.1186/s12920-020-00817-7
- Gao J., Collyer J., Wang M. et al. Genetic dissection of hypertrophic cardiomyopathy with myocardial RNA-Seq // Int. J. Mol. Sci. 2020. V. 21. № 9. P. 3040. https://doi.org/10.3390/ijms21093040
- Hombach S., Kretz M. Non-coding RNAs: classification, biology and functioning // Adv. Exp. Med. Biol. 2016. V. 937. P. 3–17. https://doi.org/10.1007/978-3-319-42059-2_1
- Stavast C.J., Erkeland S.J. The non-canonical aspects of MicroRNAs: Many roads to gene regulation // Cells. 2019. V. 8. № 11. P. 1465. https://doi.org/10.3390/cells8111465
- Rao P.K., Toyama Y., Chiang H.R. et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure // Circ. Res. 2009. V. 105. № 6. P. 585–594. https://doi.org/10.1161/CIRCRESAHA.109.200451
- Yang L. Splicing noncoding RNAs from the inside out // Wiley Interdiscip. Rev. RNA. 2015. V. 6. № 6. P. 651–660. https://doi.org/10.1002/wrna.1307
- Jarroux J., Morillon A., Pinskaya M. History, discovery, and classification of lncRNAs // Adv. Exp. Med. Biol. 2017. V. 1008. P. 1–46. https://doi.org/10.1007/978-981-10-5203-3_1
- Luo S., Lu J.Y., Liu L. et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells // Cell Stem Cell. 2016. V. 18. № 5. P. 637–652. https://doi.org/10.1016/j.stem.2016.01.024
- Barrett S.P., Salzman J. Circular RNAs: analysis, expression and potential functions // Development. 2016. V. 143. № 11. P. 1838–1847. https://doi.org/10.1242/dev.128074
- Liang D., Tatomer D.C., Luo Z. et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting // Mol. Cell. 2017. V. 68. № 5. P. 940–954.e3. https://doi.org/10.1016/j.molcel.2017.10.034
- Vo J.N., Cieslik M., Zhang Y. et al. The landscape of circular RNA in cancer // Cell. 2019. V. 176. № 4. P. 869–881.e13. https://doi.org/10.1016/j.cell.2018.12.021
- Kazimierczyk M., Kasprowicz M.K., Kasprzyk M.E., Wrzesinski J. Human long noncoding RNA interactome: detection, characterization and function // Int. J. Mol. Sci. 2020. V. 21. № 3. P. 1027. https://doi.org/10.3390/ijms21031027
- Yuan Y., Wang J., Chen Q. et al. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling // Biochim. Biophys. Acta Mol. Basis Dis. 2019. V. 1865. № 6. P. 1421–1427. https://doi.org/10.1016/j.bbadis.2019.02.014
- Guo Q., Wang J., Sun R. et al. Comprehensive construction of a circular RNA-associated competing endogenous RNA network identified novel circular RNAs in hypertrophic cardiomyopathy by integrated analysis // Front. Genet. 2020. V. 11. P. 764. https://doi.org/10.3389/fgene.2020.00764
- Guo Q., Wang J., Sun R. et al. Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis // Mol. Med. Rep. 2020. V. 22. № 6. P. 4637–4644. https://doi.org/10.3892/mmr.2020.11566
- Guo W., Schafer S., Greaser M.L. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing // Nat. Med. 2012. V. 18. № 5. P. 766–773. https://doi.org/10.1038/nm.2693
- Gi W.T., Haas J., Sedaghat-Hamedani F. et al. Epigenetic regulation of alternative mRNA splicing in dilated cardiomyopathy // J. Clin. Med. 2020. V. 9. № 5. P. 1499. https://doi.org/10.3390/jcm9051499
- Oliveira-Carvalho V., Carvalho V.O., Bocchi E.A. The emerging role of miR-208a in the heart // DNA Cell. Biol. 2013. V. 32. № 1. P. 8–12. https://doi.org/10.1089/dna.2012.1787.0
- Han P., Li W., Lin C.H. et al. A long noncoding RNA protects the heart from pathological hypertrophy // Nature. 2014. V. 514. № 7520. P. 102–106. https://doi.org/10.1038/nature13596
- Zhao X., Wang Y., Sun X. The functions of microRNA-208 in the heart // Diabetes Res. Clin. Pract. 2020. V. 160. P. 108004. https://doi.org/10.1016/j.diabres.2020.108004
- Sun F., Yuan W., Wu H. et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis // Exp. Biol. Med. (Maywood). 2020. V. 245. № 7. P. 620–630. https://doi.org/10.1177/1535370220908041
- Huang X.H., Li J.L., Li X.Y. et al. miR-208a in cardiac hypertrophy and remodeling // Front. Cardiovasc. Med. 2021. V. 8. P. 773314. https://doi.org/10.3389/fcvm.2021.773314
- van Rooij E., Quiat D., Johnson B.A. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance // Dev. Cell. 2009. V. 17. № 5. P. 662–673. https://doi.org/10.1016/j.devcel.2009.10.013
- Korostowski L., Sedlak N., Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart // PLoS Genet. 2012. V. 8. № 9. P. e1002956. https://doi.org/10.1371/journal.pgen.1002956
- Wu C., Arora P. Long noncoding Mhrt RNA: Molecular crowbar unravel insights into heart failure treatment // Circ. Cardiovasc. Genet. 2015. V. 8. № 1. P. 213–215. https://doi.org/10.1161/CIRCGENETICS.115.001019
- Kakimoto Y., Tanaka M., Kamiguchi H. et al. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart // Int. J. Cardiol. 2016. V. 211. P. 43–48. https://doi.org/10.1016/j.ijcard.2016.02.145
- Harikrishnan K.N., Okabe J., Mathiyalagan P. et al. Sex-based Mhrt methylation chromatinizes MeCP2 in the heart // iScience. 2019. V. 17. P. 288–301. https://doi.org/10.1016/j.isci.2019.06.031
- Iannolo G., Sciuto M.R., Cuscino N. et al. miRNA expression analysis in the human heart: Undifferentiated progenitors vs. bioptic tissues-implications for proliferation and ageing // J. Cell. Mol. Med. 2021. V. 25. № 18. P. 8687–8700. https://doi.org/10.1111/jcmm.16824
- Kim S.K., Bennett R., Ingles J. et al. Arrhythmia in cardiomyopathy: sex and gender differences // Curr. Heart Fail. Rep. 2021. V. 18. № 5. P. 274–283. https://doi.org/10.1007/s11897-021-00531-0
- Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction) // J. Mol. Cell. Cardiol. 2016. V. 94. P. 107–121. https://doi.org/10.1016/j.yjmcc.2016.03.015
- Callis T.E., Pandya K., Seok H.Y. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice // J. Clin. Invest. 2009. V. 119. № 9. P. 2772–2786. https://doi.org/10.1172/JCI36154
- Hupfeld J., Ernst M., Knyrim M. et al. miR-208b reduces the expression of Kcnj5 in a cardiomyocyte cell line // Biomedicines. 2021. V. 9. № 7. P. 719. https://doi.org/10.3390/biomedicines9070719
- Mathiyalagan P., Okabe J., Chang L. et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart // Nucl. Acids Res. 2014. V. 42. № 2. P. 790–803. https://doi.org/10.1093/nar/gkt896
- Zhou Q., Schötterl S., Backes D. et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy // Int. J. Cardiol. 2017. V. 230. P. 634–641. https://doi.org/10.1016/j.ijcard.2016.12.171
- Tsuji M., Kawasaki T., Matsuda T. et al. Sexual dimorphisms of mRNA and miRNA in human/murine heart disease // PLoS One. 2017. V. 12. № 7. P. e0177988. https://doi.org/10.1371/journal.pone.0177988
- Gioffré S., Ricci V., Vavassori C. et al. Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity // Biomed. Pharmacother. 2019. V. 110. P. 1–8. https://doi.org/10.1016/j.biopha.2018.11.042
- Schultz B.M., Gallicio G.A., Cesaroni M. et al. Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain // Nucl. Acids Res. 2015. V. 43. № 2. P. 745–759. https://doi.org/10.1093/nar/gku1324
- Terranova R., Yokobayashi S., Stadler M.B. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos // Dev. Cell. 2008. V. 15. № 5. P. 668–679. https://doi.org/10.1016/j.devcel.2008.08.015
- Halliday B.P., Gulati A., Ali A. et al. Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy // Eur. J. Heart Fail. 2018. V. 20. № 10. P. 1392–1400. https://doi.org/10.1002/ejhf.1216
- Pelliccia F., Limongelli G., Autore C. et al. Sex-related differences in cardiomyopathies // Int. J. Cardiol. 2019. V. 286. P. 239–243. https://doi.org/10.1016/j.ijcard.2018.10.091
- De Bellis A., De Angelis G., Fabris E. et al. Gender-related differences in heart failure: beyond the “one-size-fits-all” paradigm // Heart Fail. Rev. 2020. V. 25. № 2. P. 245–255. https://doi.org/10.1007/s10741-019-09824-y
- Palacín M., Reguero J.R., Martín M. et al. Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations // Clin. Chem. 2011. V. 57. № 11. P. 1614–1616. https://doi.org/10.1373/clinchem.2011.168005
- Bagnall R.D., Tsoutsman T., Shephard R.E. et al. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure // PLoS One. 2012. V. 7. № 9. P. e44744. https://doi.org/10.1371/journal.pone.0044744
- Ferreira L.R., Frade A.F., Santos R.H. et al. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy // Int. J. Cardiol. 2014. V. 175. № 3. P. 409–417. https://doi.org/10.1016/j.ijcard.2014.05.019
- Jaguszewski M., Osipova J., Ghadri J.R. et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction // Eur. Heart J. 2014. V. 35. № 15. P. 999–1006. https://doi.org/10.1093/eurheartj/eht392
- Roncarati R., Viviani Anselmi C., Losi M.A. et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2014. V. 63. № 9. P. 920–927. https://doi.org/10.1016/j.jacc.2013.09.041
- Costantino S., Paneni F., Lüscher T.F., Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart // Eur. Heart J. 2016. V. 37. № 6. P. 572–576. https://doi.org/10.1093/eurheartj/ehv599
- de Gonzalo-Calvo D., van der Meer R.W., Rijzewijk L.J. et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes // Sci. Rep. 2017. V. 7. № 1. P. 47. https://doi.org/10.1038/s41598-017-00070-6
- Li M., Chen X., Chen L. et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM // J. Transl. Med. 2018. V. 16. № 1. P. 161. https://doi.org/10.1186/s12967-018-1534-3
- Scolari F.L., Faganello L.S., Garbin H.I. et al. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy // Int. J. Cardiol. 2021. V. 327. P. 146–154. https://doi.org/10.1016/j.ijcard.2020.11.004
- Calderon-Dominguez M., Belmonte T., Quezada-Feijoo M. et al. Plasma microrna expression profile for reduced ejection fraction in dilated cardiomyopathy // Sci. Rep. 2021. V. 11. № 1. P. 7517. https://doi.org/10.1038/s41598-021-87086-1
- Hailu F.T., Karimpour-Fard A., Toni L.S. et al. Integrated analysis of miRNA-mRNA interaction in pediatric dilated cardiomyopathy // Pediatr. Res. 2021. May 19. https://doi.org/10.1038/s41390-021-01548-w
- Khudiakov A.A., Panshin D.D., Fomicheva Y.V. et al. Different expressions of pericardial fluid MicroRNAs in patients with arrhythmogenic right ventricular cardiomyopathy and ischemic heart disease undergoing ventricular tachycardia ablation // Front. Cardiovasc. Med. 2021. V. 8. P. 647812. https://doi.org/10.3389/fcvm.2021.647812
- Liu Y., Li Y., Li J. et al. Inhibiting miR‑1 attenuates pulmonary arterial hypertension in rats // Mol. Med. Rep. 2021. V. 23(4): 283. https://doi.org/10.3892/mmr.2021.11922
- Thottakara T., Lund N., Krämer E. et al. A novel miRNA screen identifies miRNA-4454 as a candidate biomarker for ventricular fibrosis in patients with hypertrophic cardiomyopathy // Biomolecules. 2021. V. 11. № 11. P. 1718. https://doi.org/10.3390/biom11111718
- Chen S., Puthanveetil P., Feng B. et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes // J. Cell. Mol. Med. 2014. V. 18. № 3. P. 415–421. https://doi.org/10.1111/jcmm.12218
- Fang L., Ellims A.H., Moore X.L. et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy // J. Transl. Med. 2015. V. 13. P. 314. https://doi.org/10.1186/s12967-015-0672-0
- Renaud L., Harris L.G., Mani S.K. et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis // Circ. Heart. Fail. 2015. V. 8. № 6. P. 1094–1104. https://doi.org/10.1161/CIRCHEARTFAILURE.114. 001781
- Besler C., Urban D., Watzka S. et al. Endomyocardial miR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy // Eur. J. Heart Fail. 2016. V. 18. № 12. P. 1442–1451. https://doi.org/10.1002/ejhf.579
- Huang L., Xi Z., Wang C. et al. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation // Sci. Rep. 2016. V. 6. P. 20105. https://doi.org/10.1038/srep20105
- Wang Y., Li M., Xu L. et al. Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy // Mol. Med. Rep. 2017. V. 15. № 1. P. 359–365. https://doi.org/10.3892/mmr.2016.5977
- Rubiś P., Totoń-Żurańska J., Wiśniowska-Śmiałek S. et al. The relationship between myocardial fibrosis and myocardial microRNAs in dilated cardiomyopathy: A link between mir-133a and cardiovascular events // J. Cell. Mol. Med. 2018. V. 22. № 4. P. 2514–2517. https://doi.org/10.1111/jcmm.13535
- Dziewięcka E., Totoń-Żurańska J., Wołkow P. et al. Relations between circulating and myocardial fibrosis-linked microRNAs with left ventricular reverse remodeling in dilated cardiomyopathy // Adv. Clin. Exp. Med. 2020. V. 29. № 3. P. 285–293. https://doi.org/10.17219/acem/115088
- Bueno Marinas M., Celeghin R., Cason M. et al. A microRNA expression profile as non-invasive biomarker in a large arrhythmogenic cardiomyopathy cohort // Int. J. Mol. Sci. 2020. V. 21. № 4. P. 1536. https://doi.org/10.3390/ijms21041536
- Satoh M., Minami Y., Takahashi Y. et al. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy // J. Card. Fail. 2010. V. 16. № 5. P. 404–410. https://doi.org/10.1016/j.cardfail.2010.01.002
- Xue J., Zhou D., Poulsen O. et al. Exploring miRNA-mRNA regulatory network in cardiac pathology in Na+/H+ exchanger isoform 1 transgenic mice // Physiol. Genomics. 2018. V. 50. № 10. P. 846–861. https://doi.org/10.1152/physiolgenomics.00048.2018
- Qiang L., Hong L., Ningfu W. et al. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients // Int. J. Cardiol. 2013. V. 168. № 3. P. 2082–2088. https://doi.org/10.1016/j.ijcard.2013.01.160
- Matkovich S.J., Hu Y., Eschenbacher W.H. et al. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy // Circ. Res. 2012. V. 111. № 5. P. 521–531. https://doi.org/10.1161/CIRCRESAHA.112.265736
- Calore M., Lorenzon A., Vitiello L. et al. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation // Cardiovasc. Res. 2019. V. 115. № 4. P. 739–751. https://doi.org/10.1093/cvr/cvy253
- Zhao L., Li W., Zhao H. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p // Am. J. Transl. Res. 2020. V. 12. № 3. P. 718–730.
- Yang F., Qin Y., Wang Y. et al. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy // Cell. Physiol. Biochem. 2018. V. 50. № 4. P. 1230–1244. https://doi.org/10.1159/000494576
- Zhao S.F., Ye Y.X., Xu J.D. et al. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy // Acta Diabetol. 2021. V. 58. № 9. P. 1251–1267. https://doi.org/10.1007/s00592-021-01713-x
- Duisters R.F., Tijsen A.J., Schroen B. et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling // Circ. Res. 2009. V. 104. № 2. P. 170–178. https://doi.org/10.1161/CIRCRESAHA.108.182535
- Gutmann C., Khamina K., Theofilatos K. et al. Association of cardiometabolic microRNAs with COVID-19 severity and mortality // Cardiovasc. Res. 2022. V. 118. № 2. P. 461–474. https://doi.org/10.1093/cvr/cvab338
- Kontaraki J.E., Marketou M.E., Kochiadakis G.E. et al. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy // Clin. Exp. Pharmacol. Physiol. 2018. V. 45. № 11. P. 1213–1217. https://doi.org/10.1111/1440-1681.12997
- van Rooij E., Sutherland L.B., Qi X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA // Science. 2007. V. 316. № 5824. P. 575–579. https://doi.org/10.1126/science.1139089
- Wang W., Wu C., Ren L. et al. MiR-30e-5p is sponged by Kcnq1ot1 and represses Angiotensin II-induced hypertrophic phenotypes in cardiomyocytes by targeting ADAM9 // Exp. Cell. Res. 2020. V. 394. № 2. P. 112140. https://doi.org/10.1016/j.yexcr.2020.112140
- Jia Y., Duan Y., Liu T. et al. LncRNA TTN-AS1 promotes migration, invasion, and epithelial mesenchymal transition of lung adenocarcinoma via sponging miR-142-5p to regulate CDK5 // Cell Death Dis. 2019. V. 10. № 8. P. 573. https://doi.org/10.1038/s41419-019-1811-y
- Chen P., Wang R., Yue Q., Hao M. Long non-coding RNA TTN-AS1 promotes cell growth and metastasis in cervical cancer via miR-573/E2F3 // Biochem. Biophys. Res. Commun. 2018. V. 503. № 4. P. 2956–2962. https://doi.org/10.1016/j.bbrc.2018.08.077
- Dong M.M., Peng S.J., Yuan Y.N., Luo H.P. LncRNA TTN-AS1 contributes to gastric cancer progression by acting as a competing endogenous RNA of miR-376b-3p // Neoplasma. 2019. V. 66. № 4. P. 564–575. https://doi.org/10.4149/neo_2018_180927N721
- Tian C., Yang Y., Ke Y. et al. Integrative analyses of genes associated with right ventricular cardiomyopathy induced by tricuspid regurgitation // Front. Genet. 2021. V. 12. P. 708275. https://doi.org/10.3389/fgene.2021.708275
- Jiao M., You H.Z., Yang X.Y. et al. Circulating microRNA signature for the diagnosis of childhood dilated cardiomyopathy // Sci. Rep. 2018. V. 8. № 1. P. 724. https://doi.org/10.1038/s41598-017-19138-4
- Toro R., Blasco-Turrión S., Morales-Ponce F.J. et al. Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy // J. Mol. Med. (Berl.) 2018. V. 96. № 8. P. 845–856. https://doi.org/10.1007/s00109-018-1666-1
- Wang J., Jia Z., Zhang C. et al. miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2 // RNA Biol. 2014. V. 11. № 4. P. 339–350. https://doi.org/10.4161/rna.28300
- Paul A., Pai P.G., Ariyannur P.S., Joy R.A. Diagnostic accuracy of MicroRNA 208b level with respect to different types of atrial fibrillation // Indian Heart J. 2021. V. 73. № 4. P. 506–510. https://doi.org/10.1016/j.ihj.2021.06.018
- Yoneda Z.T., Anderson K.C., Quintana J.A. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes // JAMA Cardiol. 2021. V. 6. № 12. P. 1371–1379. https://doi.org/10.1001/jamacardio.2021.3370
- Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
- Li M., Wang Y.F., Yang X.C. et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction // Med. Sci. Monit. 2018. V. 24. P. 5064–5070. https://doi.org/10.12659/MSM.909348
- Wang Y., Jiao J., Wang D. et al. Effects of ticagrelor on proliferation, apoptosis, and inflammatory factors of human aortic vascular smooth muscle cells through lncRNA KCNQ1OT1 // Am. J. Transl. Res. 2021. V. 13. № 12. P. 13462–13470.
- Zhang L., Wu Y.J., Zhang S.L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure // J. Geriatr. Cardiol. 2019. V. 16. № 11. P. 818–821. https://doi.org/10.11909/j.issn.1671-5411.2019.11.006
- Xuan L., Sun L., Zhang Y. et al. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure // J. Cell. Mol. Med. 2017. V. 21. № 9. P. 1803–1814. https://doi.org/10.1111/jcmm.13101
- Zhang J., Gao C., Meng M., Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis // Biomol. Ther. (Seoul). 2016. V. 24. № 1. P. 19–24. https://doi.org/10.4062/biomolther.2015.066
- Lang M., Ou D., Liu Z. et al. LncRNA MHRT promotes cardiac fibrosis via miR-3185 pathway following myocardial infarction // Int. Heart. J. 2021. V. 62. № 4. P. 891–899. https://doi.org/10.1536/ihj.20-298
- Zhou Q., Chen J., Wu D. et al. Differential expression of long non-coding RNAs SRA, HCG22 and MHRT in children with Kawasaki disease // Exp. Ther. Med. 2021. V. 22. № 3. P. 1022. https://doi.org/10.3892/etm.2021.10454
- Ma X., Zhang Q., Zhu H. et al. Establishment and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA identifies functional genes in heart failure // Math. Biosci. Eng. 2021. V. 18. № 4. P. 4011–4026. https://doi.org/10.3934/mbe.2021201
- Kang B., Li W., Xi W. et al. Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway // Cell. Physiol. Biochem. 2017. V. 41. № 1. P. 10–21. https://doi.org/10.1159/000455816
- Li M., Ding W., Tariq M.A. et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p // Theranostics. 2018. V. 8. № 21. P. 5855–5869. https://doi.org/10.7150/thno.27285
- Jiang Y., Du W., Chu Q. et al. Downregulation of long non-coding RNA Kcnq1ot1: An important mechanism of arsenic trioxide-induced long QT syndrome // Cell. Physiol. Biochem. 2018. V. 45. № 1. P. 192–202. https://doi.org/10.1159/000486357
- Shirazi-Tehrani E., Firouzabadi N., Tamaddon G. et al. Carvedilol alters circulating MiR-1 and MiR-214 in heart failure // Pharmgenomics. Pers. Med. 2020. V. 13. P. 375–383. https://doi.org/10.2147/PGPM.S263740
- Zhuang S., Ma Y., Zeng Y. et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis // Cell. Biol. Toxicol. 2021. Oct 14. https://doi.org/10.1007/s10565-021-09660-7
- Lai L., Xu Y., Kang L. et al. LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure // Exp. Mol. Pathol. 2020. V. 115. P. 104480.https://doi.org/10.1016/j.yexmp.2020.104480
- Durr A.J., Hathaway Q.A., Kunovac A. et al. Manipulation of the MiR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for LncRNA Kcnq1ot1 // Am. J. Physiol. Cell. Physiol. 2022. V. 322. № 2. P. C482–C495. https://doi.org/10.1152/ajpcell.00446.2021
- Yang F., Qin Y., Lv J. et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy // Cell. Death. Dis. 2018. V. 9. № 10. P. 1000. https://doi.org/10.1038/s41419-018-1029-4
- Shen C., Kong B., Liu Y. et al. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR‑384b/CACNA1C axis // Biochem. Biophys. Res. Commun. 2018. V. 505. № 1. P. 134–140. https://doi.org/10.1016/j.bbrc.2018.09.064
- Parikh M., Kura B., O’Hara K.A. et al. Cardioprotective effects of dietary flaxseed post-infarction are associated with changes in MicroRNA expression // Biomolecules. 2020. V. 10. № 9. P. 1297. https://doi.org/10.3390/biom10091297
- Pan F., Xu X., Zhan Z., Xu Q. 6-Gingerol protects cardiomyocytes against hypoxia-induced injury by regulating the KCNQ1OT1/miR-340-5p/PI3K/AKT pathway // Panminerva Med. 2021. V. 63. № 4. P. 482–490. https://doi.org/10.23736/S0031-0808.20.03956-7
- Gao Y., Huang R., Chen R. et al. Ischemic postconditioning altered microRNAs in human valve replacement // J. Surg. Res. 2016. V. 200. № 1. P. 28–35. https://doi.org/10.1016/j.jss.2015.07.010
- Liao B., Dong S., Xu Z. et al. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1 // Life Sci. 2020. V. 256. P. 117811. https://doi.org/10.1016/j.lfs.2020.117811
- Lin H., Zhu Y., Zheng C. et al. Antihypertrophic Memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779 // Circulation. 2021. V. 143. № 23. P. 2277–2292. https://doi.org/10.1161/CIRCULATIONAHA.120. 047000
- Forini F., Nicolini G., Kusmic C. et al. T3 Critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: Role of an epigenetic cross-talk // Cells. 2020. V. 9. № 10. P. 2155. https://doi.org/10.3390/cells9102155
- Nishimura Y., Kondo C., Morikawa Y. et al. Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats // J. Appl. Toxicol. 2015. V. 35. № 2. P. 173–180. https://doi.org/10.1002/jat.3044
- Dal-Pra S., Hodgkinson C.P., Mirotsou M. et al. Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo // Circ. Res. 2017. V. 120. № 9. P. 1403–1413. https://doi.org/10.1161/CIRCRESAHA.116.308741
- Jiang F., Zhou X., Huang J. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy // PLoS One. 2016. V. 11. № 4. P. e0152767. https://doi.org/10.1371/journal.pone.0152767
- Luo Y., Xu Y., Liang C. et al. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin // Cell. Signal. 2018. V. 43. P. 11–20. https://doi.org/10.1016/j.cellsig.2017.11.007
- Xu Y., Luo Y., Liang C., Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis // J. Mol. Cell. Cardiol. 2020. V. 139. P. 47–61. https://doi.org/10.1016/j.yjmcc.2019.12.013
- Bian W., Jiang X.X., Wang Z. et al. Comprehensive analysis of the ceRNA network in coronary artery disease // Sci. Rep. 2021. V. 11. № 1. P. 24279. https://doi.org/10.1038/s41598-021-03688-9
- Liu Y., Yu B. MicroRNA 186 5p is expressed highly in ethanol induced cardiomyocytes and regulates apoptosis via the target gene XIAP // Mol. Med. Rep. 2019. V. 19. № 4. P. 3179–3189. https://doi.org/10.3892/mmr.2019.9953
- Florian A., Patrascu A., Tremmel R. et al. Identification of cardiomyopathy-associated circulating miRNA biomarkers in muscular dystrophy female carriers using a complementary cardiac imaging and plasma profiling approach // Front. Physiol. 2018. V. 9. P. 1770. https://doi.org/10.3389/fphys.2018.01770
- Rong J., Pan H., He J. et al. Long non-coding RNA KCNQ1OT1/microRNA-204-5p/LGALS3 axis regulates myocardial ischemia/reperfusion injury in mice // Cell Signal. 2020. V. 66. P. 109441. https://doi.org/10.1016/j.cellsig.2019.109441
- Dai W., Chao X., Jiang Z., Zhong G. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR‑223‑3p // Mol. Med. Rep. 2021. V. 24. № 6. P. 870. https://doi.org/10.3892/mmr.2021.12510
- Chen Y., Zhang Z., Zhu D. et al. Knockdown of KCNQ1OT1 attenuates cardiac hypertrophy through modulation of the miR-2054/AKT3 axis // J. Thorac. Dis. 2020. V. 12. № 9. P. 4771–4780. https://doi.org/10.21037/jtd-20-203
- Li J., Tong Y., Zhou Y. et al. LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction // Int. J. Cardiol. 2021. V. 338. P. 14–23. https://doi.org/10.1016/j.ijcard.2021.05.053
- Shen W., Li H., Su H. et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt // Mol. Cell. Biochem. 2021. V. 476. № 5. P. 2171–2179. https://doi.org/10.1007/s11010-021-04069-6
