The Function of the NBAS Has Been Revealed, Will the Same Happen with Its Multisystem Pathologies?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mutations in the NBAS gene cause two groups of diseases – SOPH-syndrome and Infantile liver failure syndrome type 2 (ILFS2, RALF), which differ in clinical manifestations, course, and prognosis. In the current review we focused on clinical and genetic aspects of these pathologies and molecular biology of the NBAS protein, its retrograde membrane traffic and nonsense-mediated RNA decay.

About the authors

L. R. Zhozhikov

Ammosov North-Eastern Federal University in Yakutsk, Institute of Medicine

Author for correspondence.
Email: leonid.zhozhikov@gmail.com
Russia, 677013, Yakutsk

F. F. Vasilev

Ammosov North-Eastern Federal University in Yakutsk, Institute of Medicine

Email: leonid.zhozhikov@gmail.com
Russia, 677013, Yakutsk

N. R. Maksimova

Ammosov North-Eastern Federal University in Yakutsk, Institute of Medicine

Email: leonid.zhozhikov@gmail.com
Russia, 677013, Yakutsk

References

  1. Maksimova N., Hara K., Nikolaeva I. et al. Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huet anomaly // J. Med. Genet. 2010. V. 47. № 8. P. 538–548. https://doi.org/10.1136/jmg.2009.074815
  2. Максимова Н.Р., Ноговицына А.Н., Куртанов Х.А., Алексеева Е.И. Популяционная частота и возраст мутации G5741 → A в гене NBAS, являющейся причиной SOPH-синдрома в республике Саха (Якутия) // Генетика. 2016. Т. 52. № 10. С. 1194–1201. https://doi.org/10.7868/S0016675816090101
  3. Haack T.B., Staufner C., Köpke M.G. et al. Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy // Am. J. Hum. Genet. 2015. V. 97. № 1. P. 163–169. https://doi.org/10.1016/j.ajhg.2015.05.009
  4. Calvo P.L., Tandoi F., Haak T.B. et al. NBAS mutations cause acute liver failure: When acetaminophen is not a culprit // Ital. J. Pediatr. 2017. V. 43. № 1. P. 88. https://doi.org/10.1186/s13052-017-0406-4
  5. Aoki T., Ichimura S., Itoh A. et al. Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in golgi-to-endoplasmic reticulum retrograde transport // Mol. Biol. Cell. V. 2009. V. 20. № 11. P. 2639–2649. https://doi.org/10.1091/mbc.e08-11-1104
  6. Longman D., Jackson-Jones K.A., Maslon M.M. et al. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum // Genes Dev. 2020. V. 34. № 15–16. P. 1075–1088. https://doi.org/10.1101/gad.338061.120
  7. Scott D.K., Board J.R., Lu X. et al. The neuroblastoma amplified gene, NAG: Genomic structure and characterisation of the 7.3 kb transcript predominantly expressed in neuroblastoma // Gene. 2003. V. 307. P. 1–11. https://doi.org/10.1016/S0378-1119(03)00459-1
  8. De Preter K., Speleman F., Combaret V. et al. Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay // Mod. Pathol. 2002. V. 15. № 2. P. 159–166. https://doi.org/10.1038/modpathol.3880508
  9. Kaneko S., Ohira M., Nakamura Y. et al. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma // J. Cancer Res. Clin. Oncol. 2007. V. 133. № 3. P. 185–192. https://doi.org/10.1007/s00432-006-0156-y
  10. Wimmer K., Zhu X.X., Lamb B.J. et al. Co-amplification of a novel gene, NAG, with the N-myc gene in neuroblastoma: 1 // Oncogene. Nature Publ. Group. 1999. V. 18. № 1. P. 233–238. https://doi.org/10.1038/sj.onc.1202287
  11. Anastasaki C., Longman D., Capper A. et al. Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish // Nucl. Acids Res. 2011. V. 39. № 9. P. 3686–3694. https://doi.org/10.1093/nar/gkq1319
  12. Longman D., Jackson-Jones K.A., Maslon M.M. et al. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum // Genes Dev. 2020. V. 34. № 15–16. P. 1075–1088. https://doi.org/10.1101/gad.338061.120
  13. Jing H., Takagi J., Liu J. et al. Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins // Structure. 2002. V. 10. № 10. P. 1453–1464. https://doi.org/10.1016/S0969-2126(02)00840-7
  14. Palagano E., Zuccarini G., Prontera P. et al. Mutations in the neuroblastoma amplified sequence gene in a family affected by acrofrontofacionasal dysostosis type 1 // Bone. 2018. V. 114. P. 125–136. https://doi.org/10.1016/j.bone.2018.06.013
  15. Tagaya M., Arasaki K., Inoue H. et al. Moonlighting functions of the NRZ (mammalian Dsl1) complex // Front. Cell Dev. Biol. 2014. V. 2. https://doi.org/10.3389/fcell.2014.00025
  16. Travis S.M., DAmico K., Yu I.-M. et al. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1 // J. Biol. Chem. 2020. V. 295. № 30. P. 10125–10135. https://doi.org/10.1074/jbc.RA120.013654
  17. Ritelli M., Palagano E., Cinquina V. et al. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency // Bone. 2020. V. 140. P. 115571. https://doi.org/10.1016/j.bone.2020.115571
  18. Staufner C., Haack T.B., Köpke M.G. et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts // J. Inherit. Metab. Dis. 2016. V. 39. № 1. P. 3–16. https://doi.org/10.1007/s10545-015-9896-7
  19. Kishor A., Fritz S.E., Hogg J.R. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome // WIREs RNA. 2019. V. 10. № 6. https://doi.org/10.1002/wrna.1548
  20. Isken O., Maquat L.E. The multiple lives of NMD factors: Balancing roles in gene and genome regulation // Nat. Rev. Genet. 2008. V. 9. № 9. P. 699–712. https://doi.org/10.1038/nrg2402
  21. Buchan J.R. mRNP granules // RNA Biol. 2014. V. 11. № 8. P. 1019–1030. https://doi.org/10.4161/15476286.2014.972208
  22. Staufner C., Peters B., Wagner M. et al. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients // Genet. Med. 2020. V. 22. № 3. P. 610–621. https://doi.org/10.1038/s41436-019-0698-4
  23. Geem D., Jiang W., Rytting H.B. et al. Resolution of recurrent pediatric acute liver failure with liver transplantation in a patient with NBAS mutation // Pediatr. Transplant. 2021. V. 25. № 7. P. e14084. https://doi.org/10.1111/petr.14084
  24. Fischer-Zirnsak B., Koenig R., Alisch F. et al. SOPH syndrome in three affected individuals showing similarities with progeroid cutis laxa conditions in early infancy // J. Hum. Genet. 2019. V. 64. № 7. P. 609–616. https://doi.org/10.1038/s10038-019-0602-8
  25. Li X., Cheng Q., Li N. et al. SOPH syndrome with growth hormone deficiency, normal bone age, and novel compound heterozygous mutations in NBAS // Fetal Pediatr. Pathol. 2018. V. 37. № 6. P. 404–410. https://doi.org/10.1080/15513815.2018.1509406
  26. Khoreva A., Pomerantseva E., Belova N. et al. Complex multisystem phenotype with immunodeficiency associated with NBAS mutations: reports of three patients and review of the literature // Front. Pediatr. 2020. V. 8. P. 577. https://doi.org/10.3389/fped.2020.00577
  27. Lenz D., Pahl J., Hauck F. et al. NBAS variants are associated with quantitative and qualitative NK and B cell deficiency // J. Clin. Immunol. 2021. V. 41. № 8. P. 1781–1793. https://doi.org/10.1007/s10875-021-01110-7
  28. Balasubramanian M., Hurst J., Brown S. et al. Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta // Bone. 2017. V. 94. P. 65–74. https://doi.org/10.1016/j.bone.2016.10.023
  29. Petukhova D.A., Gurinova E.E., Sukhomyasova A.L. et al. Identification of a novel compound heterozygous variant in NBAS causing bone fragility by the type of osteogenesis imperfecta // Bioinformatics Research and Applications / Eds Cai Z. et al. Cham: Springer Intern. Publ. 2020. V. 12304. P. 38–43. https://doi.org/10.1007/978-3-030-57821-3_4
  30. Cotrina-Vinagre F.J., Rodríguez-García M.E., Martín-Hernández E. et al. Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants // Mol. Genet. Metab. 2021. V. 133. № 2. P. 201–210. https://doi.org/10.1016/j.ymgme.2021.02.007
  31. Ricci S., Lodi L., Serranti D. et al. Immunological features of neuroblastoma amplified sequence deficiency: Report of the first case identified through newborn screening for primary immunodeficiency and review of the literature // Front. Immunol. 2019. V. 10. P. 1955. https://doi.org/10.3389/fimmu.2019.01955
  32. Suzuki S., Kokumai T., Furuya A. et al. A 34-year-old Japanese patient exhibiting NBAS deficiency with a novel mutation and extended phenotypic variation // Eur. J. Med. Genet. 2020. V. 63. № 11. P. 104039. https://doi.org/10.1016/j.ejmg.2020.104039
  33. Kim K.W., Myers R.A., Lee J.H. et al. Genome-wide association study of recalcitrant atopic dermatitis in Korean children // J. Allergy Clin. Immunol. 2015. V. 136. № 3. P. 678–684. https://doi.org/10.1016/j.jaci.2015.03.030
  34. Zou J., Zhao Z., Zhang G. et al. MEFV, IRF8, ADA, PEPD, and NBAS gene variants and elevated serum cytokines in a patient with unilateral sporadic Meniere’s disease and vascular congestion over the endolymphatic sac // J. Otol. 2022. https://doi.org/10.1016/j.joto.2022.03.001
  35. Mallakmir S., Nagral A., Bagde A. et al. Mutation in the neuroblastoma amplified sequence gene as a cause of recurrent acute liver failure, acute kidney injury, and status epilepticus // J. Clin. Exp. Hepatol. 2019. V. 9. № 6. P. 753–756. https://doi.org/10.1016/j.jceh.2019.03.008
  36. Lipiński P., Greczan M., Piekutowska-Abramczuk D. et al. NBAS deficiency due to biallelic c.2809C > G variant presenting with recurrent acute liver failure with severe hyperammonemia, acquired microcephaly and progressive brain atrophy // Metab. Brain Dis. 2021. V. 36. № 7. P. 2169–2172. https://doi.org/10.1007/s11011-021-00827-z
  37. Dayan R.R., Bignall O.N.R. II, Johnson S. et al. Neuroblastoma amplified sequence gene mutations inducing acute kidney and liver injury in an adolescent female // Case Rep. Nephrol. Dial. 2020. V. 10. № 3. P. 117–123. https://doi.org/10.1159/000508784
  38. Costantini A., Valta H., Suomi A.-M. et al. Oligogenic inheritance of monoallelic TRIP11, FKBP10, NEK1, TBX5, and NBAS variants leading to a phenotype similar to odontochondrodysplasia // Front. Genet. 2021. V. 12. P. 680838. https://doi.org/10.3389/fgene.2021.680838
  39. Brauner R., Bignon-Topalovic J., Bashamboo A. et al. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity // PLoS One. 2020. V. 15. № 12. P. e0242358. https://doi.org/10.1371/journal.pone.0242358
  40. Zhernakova D.V., Brukhin V., Malov S. et al. Genome-wide sequence analyses of ethnic populations across Russia // Genomics. 2020. V. 112. № 1. P. 442–458. https://doi.org/10.1016/j.ygeno.2019.03.007
  41. Nasif S., Contu L., Mühlemann O. Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression // Semin. Cell Dev. Biol. 2018. V. 75. P. 78–87. https://doi.org/10.1016/j.semcdb.2017.08.053

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)

Copyright (c) 2023 Л.Р. Жожиков, Ф.Ф. Васильев, Н.Р. Максимова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies