Variability of 27 Autosomal STR Loci for the Population of the Republic of Belarus Based on the Mass Parallel Sequencing Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Variability of 27 autosomal STR loci of the ForenSeq DNA Signature Prep Kit (Illumina) commercial panel was studied using the technology of mass parallel sequencing (MPS) in 733 unrelated individuals representing the population of the Republic of Belarus as well as a population base of MPS allele frequencies for expert probabilistic calculations in human identification and paternity establishment was evaluated. The agreement between genotypes obtained by MPS and capillary electrophoresis (CE) was 99.96%. The number of MPS alleles increased more than two times for eight loci (D12S391, D21S11, D2S1338, vWA, D3S1358, D8S1179, D13S317, D9S1122). Thirteen alleles detected were not included in the STRSeq BioProject catalog of the international online database STRbase 2.0. The random match probability of 27-locus MPS profiles decreased from 1.43 × 10–31 to 2.89 × 10–35, and the combined paternity index increased from 2.08 × 1010 to 3.25 × 1012 compared to CE data.

About the authors

S. A. Kotova

Scientific and Practical Center of the State Forensic Examination Committee
of the Republic of Belarus

Author for correspondence.
Email: svetlkotova@mail.ru
Republic of Belarus, 220114, Minsk

N. S. Parfionava

Scientific and Practical Center of the State Forensic Examination Committee
of the Republic of Belarus

Email: svetlkotova@mail.ru
Republic of Belarus, 220114, Minsk

T. V. Zabauskaya

Scientific and Practical Center of the State Forensic Examination Committee
of the Republic of Belarus

Email: svetlkotova@mail.ru
Republic of Belarus, 220114, Minsk

V. I. Rybakova

Scientific and Practical Center of the State Forensic Examination Committee
of the Republic of Belarus

Email: svetlkotova@mail.ru
Republic of Belarus, 220114, Minsk

A. A. Spivak

Scientific and Practical Center of the State Forensic Examination Committee
of the Republic of Belarus

Email: svetlkotova@mail.ru
Republic of Belarus, 220114, Minsk

S. A. Paliavoi

Masaryk University

Email: svetlkotova@mail.ru
Czech Republic, 60177, Brno

A. V. Lugovnev

State Forensic Examination Committee of the Republic
of Belarus

Email: svetlkotova@mail.ru
Republic of Belarus, 220073, Minsk

References

  1. Животовский Л.А. Микросателлитная изменчивость в популяциях человека и методы ее изучения // Вестник ВОГиС. 2006. Т. 10. № 1. С. 74–96.
  2. van der Gaag K.J., de Leeuw R.H., Hoogenboom J. et al. Massively parallel sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq™ system // Forensic Sci. Intern.: Genetics. 2016. V. 24. P. 86–96. https://doi.org/10.1016/j.fsigen.2016.05.016
  3. Thermo Fisher Scientific [Электронный ресурс]. URL: https://www.thermofisher.com/by/en/home.html (дата обращения 03.04.2022).
  4. Illumina. Sequencing and array-based solutions for genetic research [Электронный ресурс]. URL: https://www.illumina.com/ (дата обращения 03.04.2022).
  5. Цыбовский И.С., Веремейчик В.М., Котова С.А. и др. Создание судебной референтной базы данных по 18 аутосомным STR для ДНК-идентификации в Республике Беларусь // Генетика. 2017. Т. 53. № 2. С. 249–258.
  6. Харьков В.Н., Котова С.А., Колесников Н.А. и др. Генетическое разнообразие 21 аутосомного STR-маркера системы CODIS в популяциях Восточной Европы // Генетика. 2021. Т. 57. № 12. С. 1396–1402.
  7. STRbase 2.0 [Электронный ресурс]. URL: https://strbase-b.nist.gov (дата обращения 03.04.2022).
  8. Chacon-Cortes D., Haupt L.M., Lea R.A. et al. Comparison of genomic DNA extraction techniques from whole blood samples: A time, cost and quality evaluation study // Mol.Biol. Rep. 2012. V. 39. № 5. P. 5961−5966. https://doi.org/10.1007/s11033-011-1408-8
  9. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 478 с.
  10. Verogen, ForenSeq™ DNA Signature Prep Reference Guide // Verogen proprietary. Document # VD2018005 Rev. A, 2018. 42 p.
  11. GRCh37.p13: Genome Reference Consortium Human Build 37 patch release 13 [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/assembly/GCF_0000014-05.25 (дата обращения 03.02.2021).
  12. Parson W., Ballard D., Budowle B. et al. Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements // Forensic Sci. Intern.: Genetics. 2016. V. 22. P. 54–63. https://doi.org/10.1016/j.fsigen.2016.01.009
  13. Devesse L., Ballard D., Davenport L. et al. Concordance of the ForenSeq™ system and characterisation of sequence-specific autosomal STR alleles across two major population groups // Forensic Sci. Intern.: Genetics. 2018. V. 34. P. 57–61. https://doi.org/10.1016/j.fsigen.2017.10.012
  14. GeneAlEx 6.5: Genetic Analysis in Excel [Электронный ресурс]. URL: https://biology-assets.anu.edu.au/GenAlEx/Welcome.html (дата обращения 15.11.2021).
  15. Ristow P.G., D’Amato M.E. Forensic statistics analysis toolbox (FORSTAT): A streamlined workflow for forensic statistics // Forensic Sci. Intern.: Genetics Suppl. Series 6. 2017. V. 6. P. e52–e54. https://doi.org/10.1016/j.fsigss.2017.09.006
  16. Arlequin: An Integrated Software for Population Genetics Data Analysis [Электронный ресурс]. URL: http://cmpg.unibe.ch/software/arlequin3 (дата обращения 02.10.2018).
  17. Hussing C., Huber C., Bytyci R. et al. Sequencing of 231 forensic genetic markers using the MiSeq FGxTM forensic genomics system – an evaluation of the assay and software // Forensic Sci. Research. 2018. V. 3. №. 2. P. 111–123. https://doi.org/10.1080/20961790.2018.1446672
  18. Dai W., Pan Y., Sun X. et al. High polymorphism detected by massively parallel sequencing of autosomal STRs using old blood samples from a Chinese Han population // Sci. Rep. 2019. V. 9. P. 1–7. https://doi.org/10.1038/s41598-019-55282-9
  19. Hölzl‑Müller P., Bodner M., Berger B. et al. Exploring STR sequencing for forensic DNA intelligence databasing using the Austrian National DNA Database as an example // Int. J. Legal Med. 2021. V. 135. P. 2235–2246. https://doi.org/10.1007/s00414-021-02685-x
  20. The Evaluation of Forensic DNA Evidence. Committee on DNA Forensic Science: an update. Washington (D.C.): Natl Acad. Press, 1996. 272 p. https://doi.org/10.17226/5141
  21. Gettings K.B., Aponte R.A., Vallone P.M. et al. STR allele sequence variation: Current knowledge and future issues // Forensic Sci. Intern.: Genetics. 2015. V. 18. P. 118–130. https://doi.org/10.1016/j.fsigen.2015.06.005
  22. Gettings K.B., Borsuka L.A., Steffen C.R. et al. Sequence-based U.S. population data for 27 autosomal STR loci // Forensic Sci. Intern.: Genetics. 2018. V. 37. P. 106–115. https://doi.org/10.1016/j.fsigen.2018.07.013
  23. Simayijiang H., Morling N., Børsting C. Sequencing of human identification markers in an Uyghur population using the MiSeq FGxTM Forensic Genomics System // Forensic Sci. Research. 2020. P. 1–9. https://doi.org/10.1080/20961790.2020.1779967
  24. Gettings K.B., Borsuk L.A., Ballard D. et al. STRSeq: A catalog of sequence diversity at human identification Short Tandem Repeat loci // Forensic Sci. Intern.: Genetics. 2017. V. 31. P. 111–117. https://doi.org/10.1016/j.fsigen.2017.08.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (316KB)

Copyright (c) 2023 С.А. Котова, А.С. Парфёнова, Т.В. Забавская, В.И. Рыбакова, Е.А. Спивак, С.А. Полевой, А.В. Луговнёв

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies