The ATOX1 Gene Role in Copper Metabolism and in the Copper-Induced Diseases Pathogenesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The ATOX1 (Antioxidant Protein 1) is a human copper metal chaperone that plays an important role in cellular copper homeostasis. The protein is responsible for cytosolic copper absorption from CTR1 (copper transporter 1) and transport to the copper pumps in the Trans Golgi network to the ATP7A and ATP7B proteins. This review collected data on the antioxidant role of ATOX1, the gene role in the angiogenesis regulation and cancer cell proliferation, and the role in the copper-induced diseases pathogenesis – Wilson’s disease and Menkes disease.

作者简介

I. Zhalsanova

Research Institute of Medical Genetics, Tomsk National Research Medical Center

编辑信件的主要联系方式.
Email: irina.zhalsanova@medgenetics.ru
Russia, 634050, Tomsk

E. Fonova

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: irina.zhalsanova@medgenetics.ru
Russia, 634050, Tomsk

D. Zhigalina

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: irina.zhalsanova@medgenetics.ru
Russia, 634050, Tomsk

N. Skryabin

Research Institute of Medical Genetics, Tomsk National Research Medical Center

Email: irina.zhalsanova@medgenetics.ru
Russia, 634050, Tomsk

参考

  1. Linder M.C. Biochemistry of Copper // Biochem. Copp. Springer US. 1991. https://doi.org/10.1007/978-1-4757-9432-8
  2. Van Den Berghe P.V.E., Klomp L.W.J. New developments in the regulation of intestinal copper absorption // Nutr. Rev. 2009. V. 67. № 11. P. 658–672. https://doi.org/10.1111/J.1753-4887.2009.00250.X
  3. Gaetke L.M., Chow-Johnson H.S., Chow C.K. Copper: toxicological relevance and mechanisms // Arch. Toxicol. 2014. V. 88. № 11. P. 1929–1938. https://doi.org/10.1007/S00204-014-1355-Y
  4. Korte J.J., Prohaska J.R. Dietary copper deficiency alters protein and lipid composition of murine lymphocyte plasma membranes // J. Nutr. 1987. V. 117. № 6. P. 1076–1084. https://doi.org/10.1093/JN/117.6.1076
  5. Leah Harris Z., Gitlin J.D. Genetic and molecular basis for copper toxicity // Am. J. Clin. Nutr. 1996. V. 63. № 5. P. 836–841. https://doi.org/10.1093/AJCN/63.5.836
  6. O’Halloran T.V., Culotta V.C. Metallochaperones, an intracellular shuttle service for metal ions // J. Biol. Chem. 2000. V. 275. № 33. P. 25057–25060. https://doi.org/10.1074/JBC.R000006200
  7. Klomp L.W.J., Lin S.J., Yuan D.S. et al. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis // J. Biol. Chem. 1997. V. 272. № 14. P. 9221–9226. https://doi.org/10.1074/JBC.272.14.9221
  8. Portnoy M.E., Rosenzweig A.C., Rae T. et al. Structure-function analyses of the ATX1 metallochaperone // J. Biol. Chem. 1999. V. 274. № 21. P. 15041–15045. https://doi.org/10.1074/JBC.274.21.15041
  9. Kelner G.S., Lee M.H., Clark M.E. et al. The copper transport protein Atox1 promotes neuronal survival // J. Biol. Chem. 2000. V. 275. № 1. P. 580–584. https://doi.org/10.1074/JBC.275.1.580
  10. Hatori Y., Clasen S., Hasan N.M. et al. Functional partnership of the copper export machinery and glutathione balance in human cells // J. Biol. Chem. 2012. V. 287. № 32. P. 26678–26687. https://doi.org/10.1074/JBC.M112.381178
  11. Hatori Y., Lutsenko S. The role of copper chaperone atox1 in coupling redox homeostasis to intracellular copper distribution // Antioxidants (Basel, Switzerland). 2016. V. 5. № 3. https://doi.org/10.3390/ANTIOX5030025
  12. Walker J.M., Tsivkovskii R., Lutsenko S. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity // J. Biol. Chem. 2002. V. 277. № 31. P. 27953–27959. https://doi.org/10.1074/JBC.M203845200
  13. Culotta V.C., Klomp L.W.J., Strain J. et al. The copper chaperone for superoxide dismutase // J. Biol. Chem. Elsevier. 1997. V. 272. № 38. P. 23469–23472. https://doi.org/10.1074/JBC.272.38.23469
  14. Petzoldt S., Kahra D., Kovermann M. et al. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro // Biometals. 2015. V. 28. № 3. P. 577–585. https://doi.org/10.1007/S10534-015-9832-1
  15. Hatori Y., Inouye S., Akagi R. Thiol-based copper handling by the copper chaperone Atox1 // IUBMB Life. Blackwell Publ. Ltd. 2017. V. 69. № 4. P. 246–254. https://doi.org/10.1002/iub.1620
  16. Curnock R., Cullen P.J. Mammalian copper homeostasis requires retromer-dependent recycling of the high-affinity copper transporter 1 // J. Cell Sci. 2020. V. 133. № 16. https://doi.org/10.1242/JCS.249201
  17. Itoh S., Ha W.K., Nakagawa O. et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation // J. Biol. Chem. 2008. V. 283. № 14. P. 9157–9167. https://doi.org/10.1074/JBC.M709463200
  18. Blockhuys S., Wittung-Stafshede P. Roles of copper-binding proteins in breast cancer // Int. J. Mol. Sci. 2017. V. 18. № 4. https://doi.org/10.3390/IJMS18040871
  19. Antoniades V., Sioga A., Dietrich E.M. et al. Is copper chelation an effective anti-angiogenic strategy for cancer treatment? // Med. Hypotheses. 2013. V. 81. № 6. P. 1159–1163. https://doi.org/10.1016/J.MEHY.2013.09.035
  20. Denoyer D., Masaldan S., La Fontaine S. et al. Targeting copper in cancer therapy: “Copper That Cancer” // Metallomics. 2015. V. 7. № 11. P. 1459–1476. https://doi.org/10.1039/C5MT00149H
  21. Gupte A., Mumper R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment // Cancer Treat. Rev. 2009. V. 35. № 1. P. 32–46. https://doi.org/10.1016/J.CTRV.2008.07.004
  22. Doñate F., Juarez J.C., Burnett M.E. et al. Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224) // Br. J. Cancer. 2008. V. 98. № 4. P. 776–783. https://doi.org/10.1038/SJ.BJC.6604226
  23. Wang J., Luo C., Shan C. et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation // Nat. Chem. 2015. V. 7. № 12. P. 968–979. https://doi.org/10.1038/nchem.2381
  24. Jana A., Das A., Krett N.L. et al. Nuclear translocation of Atox1 potentiates activin A-induced cell migration and colony formation in colon cancer // PLoS One. 2020. V. 15. № 1. https://doi.org/10.1371/JOURNAL.PONE.0227916
  25. Blockhuys S., Brady D.C., Wittung-Stafshede P. Evaluation of copper chaperone ATOX1 as prognostic biomarker in breast cancer // Breast Cancer. 2020. V. 27. № 3. P. 505–509. https://doi.org/10.1007/S12282-019-01044-4
  26. Kim Y.J., Bond G.J., Tsang T. et al. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma // Metallomics. 2019. V. 11. № 8. P. 1430–1440. https://doi.org/10.1039/C9MT00042A
  27. Kaler S.G., Ferreira C.R., Yam L.S. Estimated birth prevalence of Menkes disease and ATP7A-related disorders based on the Genome Aggregation Database (gnomAD) // Mol. Genet. Metab. Reports. Elsevier. 2020. V. 24. P. 100602. https://doi.org/10.1016/J.YMGMR.2020.100602
  28. Horn N., Wittung-Stafshede P. ATP7A-regulated enzyme metalation and trafficking in the menkes disease puzzle // Biomedicines. 2021. V. 9. № 4. https://doi.org/10.3390/BIOMEDICINES9040391
  29. Vulpe C., Levinson B., Whitney S. et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase // Nat. Genet. 1993. V. 3. № 1. P. 7–13. https://doi.org/10.1038/NG0193-7
  30. Tümer Z., Møller L.B. Menkes disease // Eur. J. Hum. Genet. 2009. V. 18. № 5. P. 511–518. https://doi.org/10.1038/ejhg.2009.187
  31. Chen J., Jiang Y., Shi H. et al. The molecular mechanisms of copper metabolism and its roles in human diseases // Pflugers Arch. 2020. V. 472. № 10. P. 1415–1429. https://doi.org/10.1007/S00424-020-02412-2
  32. Hamza I., Faisst A., Prohaska J. et al. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis // Proc. Natl Acad. Sci. USA. 2001. V. 98. № 12. P. 6848–6852. https://doi.org/10.1073/PNAS.111058498
  33. Liu P.C., Koeller D.M., Kaler S.G. Genomic organization of ATOXI, A human copper chaperone // BMC Genet. BioMed Central. 2003. V. 4. № 1. P. 1–4. https://doi.org/10.1186/1471-2156-4-4/TABLES/2
  34. Федеральные клинические рекомендации по диагностике и лечению болезни Вильсона–Коновалова (гепатолентикулярная дегенерация). М., 2015.
  35. Shribman S., Warner T.T., Dooley J.S. Clinical presentations of Wilson disease // Ann. Transl. Med. 2019. V. 7. Suppl. 2. P. S60. https://doi.org/10.21037/ATM.2019.04.27
  36. Machado A., Chien H.F., Deguti M.M. et al. Neurological manifestations in Wilson’s disease: Report of 119 cases // Mov. Disord. 2006. V. 21. № 12. P. 2192–2196. https://doi.org/10.1002/MDS.21170
  37. Баязутдинова Г.М., Щагина О.А., Поляков А.В. Молекулярный патогенез болезни Вильсона–Коновалова // Мед. генетика. 2017. Т. 16. № 7. С. 18–24.
  38. Chang I.J., Hahn S.H. The genetics of Wilson disease // Handb. Clin. Neurol. 2017. V. 142. P. 19. https://doi.org/10.1016/B978-0-444-63625-6.00003-3
  39. Postrigan A.E., Zhalsanova I.Z., Fonova E.A. et al. Modifier genes as a cause of Wilson–Konovalov disease clinical polymorphism // Rus. J. Genet. 2021. V. 57. № 5. P. 522–532. https://doi.org/10.1134/S1022795421050094/TABLES/1
  40. Hamza I., Schaefer M., Klomp L.W.J. et al. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis // Proc. Natl Acad. Sci. USA. 1999. V. 96. № 23. P. 13363–13368. https://doi.org/10.1073/PNAS.96.23.13363
  41. Simon I., Schaefer M., Reichert J. et al. Analysis of the human Atox 1 homologue in Wilson patients // World J. Gastroenterol. 2008. V. 14. № 15. P. 2383–2387. https://doi.org/10.3748/WJG.14.2383
  42. Bost M., Piguet-Lacroix G., Parant F. et al. Molecular analysis of Wilson patients: Direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis // J. Trace Elem. Med. Biol. 2012. V. 26. № 2–3. P. 97–101. https://doi.org/10.1016/J.JTEMB.2012.04.024
  43. Kumari N., Kumar A., Pal A. et al. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: Plausible role in modulating ATOX1-ATP7B interaction // Mol. Biol. Rep. 2019. V. 46. № 3. P. 3307–3313. https://doi.org/10.1007/S11033-019-04791-X
  44. Reed E., Lutsenko S., Bandmann O. Animal models of Wilson disease // J. Neurochem. 2018. V. 146. № 4. P. 356–373. https://doi.org/10.1111/JNC.14323
  45. Medici V., Huster D. Animal models of Wilson disease // Handb. Clin. Neurol. 2017. V. 142. P. 57–70. https://doi.org/10.1016/B978-0-444-63625-6.00006-9
  46. Wu J., Forbes J.R., Chen H.S. et al. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene // Nat. Genet. 1994. V. 7. № 4. P. 541–545. https://doi.org/10.1038/NG0894-541
  47. Suzuki M., Aoki T. Impaired hepatic copper homeostasis in long-evans Cinnamon rats: Reduced biliary excretion of copper // Pediatr. Res. 1994. V. 35. № 5. P. 598–601. https://doi.org/10.1203/00006450-199405000-00012
  48. Rauch H. Toxic milk, A new mutation affecting cooper metabolism in the mouse // J. Hered. 1983. V. 74. № 3. P. 141–144. https://doi.org/10.1093/OXFORDJOURNALS.JHE-RED.A109751
  49. La Fontaine S., Theophilos M.B., Firth S.D. et al. Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase // Hum. Mol. Genet. 2001. V. 10. № 4. P. 361–370. https://doi.org/10.1093/HMG/10.4.361
  50. Voskoboinik I., Greenough M., La Fontaine S. et al. Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant // Biochem. Biophys. Res. 2001. V. 281. № 4. P. 966–970. https://doi.org/10.1006/BBRC.2001.4445
  51. Kasai N., Osanai T., Miyoshi I. et al. Clinico-pathological studies of LEC rats with hereditary hepatitis and hepatoma in the acute phase of hepatitis // Lab. Anim. Sci. 1990. V. 40. P. 502–505.
  52. Smedley R., Mullaney T., Rumbeiha W. Copper-associated hepatitis in Labrador Retrievers // Vet. Pathol. 2009. V. 46. № 3. P. 484–490. https://doi.org/10.1354/VP.08-VP-0197-S-FL
  53. Fieten H., Gill Y., Martin A.J. et al. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: A new canine model for copper-metabolism disorders // Dis. Model. Mech. 2016. V. 9. № 1. P. 25–38. https://doi.org/10.1242/DMM.020263
  54. Miyayama T., Suzuki K.T., Ogra Y. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1 // Toxicol. Appl. Pharmacol. 2009. V. 237. № 2. P. 205–213. https://doi.org/10.1016/J.TAAP.2009.03.024
  55. Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease // Toxicology. 2011. V. 283. № 2–3. P. 65–87. https://doi.org/10.1016/J.TOX.2011.03.001
  56. Zhang J.W., Liu J.X., Hou H.M. et al. Effects of tetrathiomolybdate and penicillamine on brain hydroxyl radical and free copper levels: a microdialysis study in vivo // Biochem. Biophys. Res. Commun. 2015. V. 458. № 1. P. 82–85. https://doi.org/10.1016/J.BBRC.2015.01.071
  57. Alvarez H.M., Xue Y., Robinson C.D. et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation // Science. 2010. V. 327. № 5963. P. 331–334. https://doi.org/10.1126/SCIENCE.1179907
  58. Scheinberg I.H., Walshe J.M. Orphan Diseases and Orphan Drugs. Manchester: Univ. Press, 1986. V. 3. 228 p.
  59. Walshe J.M. The conquest of Wilson’s disease // Brain. 2009. V. 132. Pt 8. P. 2289–2295. https://doi.org/10.1093/BRAIN/AWP149
  60. Brewer G.J. Zinc and tetrathiomolybdate for the treatment of Wilson’s disease and the potential efficacy of anticopper therapy in a wide variety of diseases // Metallomics. 2009. V. 1. № 3. P. 199–206. https://doi.org/10.1039/B901614G
  61. Weiss K.H., Askari F.K., Czlonkowska A. et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: An open-label, multicentre, phase 2 study // Lancet Gastroenterol Hepatol. 2017. V. 2. № 12. P. 869–876. https://doi.org/10.1016/S2468-1253(17)30293-5
  62. Stremmel W. Bis-choline tetrathiomolybdate as old drug in a new design for Wilson’s disease: Good for brain and liver? // Hepatology. 2019. V. 69. № 2. P. 901–903. https://doi.org/10.1002/HEP.30130
  63. Goodman V., Brewer G., Merajver S. Control of copper status for cancer therapy // Curr. Cancer Drug Targets. 2005. V. 5. № 7. P. 543–549. https://doi.org/10.2174/156800905774574066
  64. Tetrathiomolybdate, a copper chelator for the treatment of Wilson disease, pulmonary fibrosis and other indications – PubMed (Электронный ресурс). URL: https://pubmed.ncbi.nlm.nih.gov/18683094/ (accessed: 01.04.2022).
  65. Ishida S., McCormick F., Smith-McCune K. et al. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator // Cancer Cell. 2010. V. 17. № 6. P. 574–583. https://doi.org/10.1016/J.CCR.2010.04.011
  66. Blockhuys S., Celauro E., Hildesjö C. et al. Defining the human copper proteome and analysis of its expression variation in cancers // Metallomics. 2017. V. 9. № 2. P. 112–123. https://doi.org/10.1039/C6MT00202A
  67. Urso E., Maffia M. Behind the link between copper and angiogenesis: Established mechanisms and an overview on the role of vascular copper transport systems // J. Vasc. Res. 2015. V. 52. № 3. P. 172–196. https://doi.org/10.1159/000438485
  68. Maryon E.B., Molloy S.A., Kaplan J.H. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1 // Am. J. Physiol. Cell Physiol. 2013. V. 304. № 8. https://doi.org/10.1152/AJPCELL.00417.2012
  69. Puig-Pijuan T., Souza L.R.Q., Da C. et al. Copper imbalance linked to oxidative stress and cell death during Zika virus infection in human astrocytes // bioRxiv. 2021. P. 2021.12.29.474370. https://doi.org/10.1101/2021.12.29.474370

版权所有 © И.Ж. Жалсанова, Е.А. Фонова, Д.И. Жигалина, Н.А. Скрябин, 2023

##common.cookie##