Epigenetics of Cardiomyopathy: Histone Modifications and DNA Methylation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cardiomyopathy is clinically and genetically heterogeneous group of pathologies of myocardium that are being actively studied by researchers. It is now generally accepted that, along with genetic factors, epigenetic mechanisms can be significant in both risk for cardiomyopathy and different clinical manifestations of the disease. This article provides an overview of scientific publications devoted to the study of histone modifications and chromatin remodeling, as well as DNA methylation changes in different types of cardiomyopathy. Most of the reports focused on epigenome profiling of myocardium of patients with dilated cardiomyopathy. The development of cardiomyopathy (dilated, hypertrophic, ischemic, arrhythmogenic, and restrictive) is associated with epigenetic changes of myocardium and this leads to gene expression alteration and metabolic pathways imbalance with pathogenetic significance for heart diseases. The genes of cardiomyopathies (LMNA, TNNI3, ANKRD1, SLC25A4, EYA4, GATAD1, PRDM16, and DMD) are also involved in epigenetic changes of myocardium. Epigenetic modifications, and enzymes that regulate epigenetic processes, are promising for the identification of new molecular markers and metabolic pathways significant for cardiomyopathies, as well as for the development of diagnostic panels and new drugs. At the same time, the high clinical and etiological heterogeneity of cardiomyopathies, a large number of diverse and interrelated epigenetic processes that occur both under physiological conditions and during the pathogenesis of the disease indicate the need to expand epigenetic studies in various forms of cardiomyopathies, including epigenome, transcriptome, and epitranscriptome levels using omics analysis of single cells of myocardium in humans and model animals, as well as in cell lines in disease modeling.

About the authors

A. N. Kucher

Research Institute of Medical Genetics, Tomsk National Research
Medical Center of the Russian Academy of Sciences

Email: maria.nazarenko@medgenetics.ru
Russia, 634050, Tomsk

M. S. Nazarenko

Research Institute of Medical Genetics, Tomsk National Research
Medical Center of the Russian Academy of Sciences

Author for correspondence.
Email: maria.nazarenko@medgenetics.ru
Russia, 634050, Tomsk

References

  1. Jimenez J., Rentschler S.L. Transcriptional and epigenetic regulation of cardiac electrophysiology // Pediatr. Cardiol. 2019. V. 40. № 7. P. 1325–1330. https://doi.org/10.1007/s00246-019-02160-w
  2. Yu J., Zeng C., Wang Y. Epigenetics in dilated cardiomyopathy // Curr. Opin. Cardiol. 2019. V. 34. № 3. P. 260–269. https://doi.org/10.1097/HCO.0000000000000616
  3. Schiano C., Benincasa G., Franzese M. et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases // Pharmacol. Ther. 2020. V. 210. P. 107514. https://doi.org/10.1016/j.pharmthera.2020.107514
  4. Napoli C., Coscioni E., de Nigris F., Donatelli F. Emergent expansion of clinical epigenetics in patients with cardiovascular diseases // Curr. Opin. Cardiol. 2021. V. 36. № 3. P. 295–300. https://doi.org/10.1097/HCO.0000000000000843
  5. Han P., Li W., Yang J. et al. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts // Biochim. Biophys. Acta. 2016. V. 1863. № 7. Pt. B. P. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002
  6. De Majo F., Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart // Noncoding RNA Res. 2018. V. 3. № 1. P. 20–28. https://doi.org/10.1016/j.ncrna.2018.02.003
  7. Zhou Q., Yu B., Anderson C. et al. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus // Elife. 2019. V. 8. P. e40470. https://doi.org/10.7554/eLife.40470
  8. Yu J., Yang Y., Xu Z. et al. Long Noncoding RNA ahit protects against cardiac hypertrophy through SUZ12 (Suppressor of Zeste 12 Protein Homolog)-mediated downregulation of MEF2A (Myocyte Enhancer Factor 2A) // Circ. Heart Fail. 2020. V. 13. № 1. P. e006525. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006525
  9. Pei J., Schuldt M., Nagyova E. et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations // Clin. Epigenetics. 2021. V. 13. № 1. P. 61. https://doi.org/10.1186/s13148-021-01043-3
  10. Ghosh A.K. p300 in cardiac development and accelerated cardiac aging // Aging Dis. 2020. V. 11. № 4. P. 916–926. https://doi.org/10.14336/AD.2020.0401
  11. Salemi V.M.C., Mohty D., Altavila S.L.L. et al. Insights into the classification of cardiomyopathies: past, present, and future directions // Clinics (Sao Paulo). 2021. V. 76. P. e2808. https://doi.org/10.6061/clinics/2021/e2808
  12. McKenna W.J., Maron B.J., Thiene G. Classification, epidemiology, and global burden of cardiomyopathies // Circ. Res. 2017. V. 121. № 7. P. 722–730. https://doi.org/10.1161/CIRCRESAHA.117.309711
  13. МКБ-11 (Международная классификация болезней 11-го пересмотра). [Electronic resource]. URL: https://icd11.ru/ Accessed 03.2022.
  14. Bhandari B., Quintanilla Rodriguez B.S., Masood W. Ischemic Cardiomyopathy. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.
  15. Arbustini E., Narula N., Tavazzi L. et al. The MOGE(S) classification of cardiomyopathy for clinicians // J. Am. Coll. Cardiol. 2014. V. 64. № 3. P. 304–318. https://doi.org/10.1016/j.jacc.2014.05.027
  16. Menon S.C., Michels V.V., Pellikka P.A. et al. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology // Clin. Genet. 2008. V. 74. № 5. P. 445–454. https://doi.org/10.1111/j.1399-0004.2008.01062.x
  17. Webber S.A., Lipshultz S.E., Sleeper L.A. et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: A report from the Pediatric Cardiomyopathy Registry // Circulation. 2012. V. 126. № 10. P. 1237–1244. https://doi.org/10.1161/CIRCULATIONAHA.112.10-4638
  18. Lipshultz S.E., Orav E.J., Wilkinson J.D. et al. Wilkinson J.D. et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: An analysis of data from the Pediatric Cardiomyopathy Registry // Lancet. 2013. V. 382. № 9908. P. 1889–1897. https://doi.org/10.1016/S0140-6736(13)61685-2
  19. Jefferies J.L., Wilkinson J.D., Sleeper L.A. et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: Results from the Pediatric Cardiomyopathy Registry // J. Card. Fail. 2015. V. 21. № 11. P. 877–884. https://doi.org/10.1016/j.cardfail.2015.06.381
  20. Lee T.M., Hsu D.T., Kantor P. et al. Pediatric cardiomyopathies // Circ. Res. 2017. V. 121. № 7. P. 855–873. https://doi.org/10.1161/CIRCRESAHA.116.309386
  21. Pérez-Palma E., Gramm M., Nürnberg P. et al. Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database // Nucl. Acids Res. 2019. V. 47. № W1. P. W99–W105. https://doi.org/10.1093/nar/gkz411
  22. Комиссарова С.М., Ринейская Н.М., Чакова Н.Н., Ниязова С.С. Смешанный фенотип: некомпактный миокард левого желудочка и гипертрофическая кардиомиопатия // Кардиология. 2020. Т. 60. № 4. С. 137–145. https://doi.org/10.18087/cardio.2020.4.n728
  23. Blagova O., Alieva I., Kogan E. et al. Mixed hypertrophic and dilated phenotype of cardiomyopathy in a patient with homozygous in-frame deletion in the MyBPC3 gene treated as myocarditis for a long time // Front. Pharmacol. 2020. V. 11. P. 579450. https://doi.org/10.3389/fphar.2020.579450
  24. Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
  25. Mattesi G., Cipriani A., Bauce B. et al. Arrhythmogenic left ventricular cardiomyopathy: Genotype-phenotype correlations and new diagnostic criteria // J. Clin. Med. 2021. V. 10. № 10. P. 2212. https://doi.org/10.3390/jcm10102212
  26. Wang J., Li W., Han Y., Chen Y. Different clinical presentation and tissue characterization in a monozygotic twin pair with MYH7 mutation-related hypertrophic cardiomyopathy // Int. Heart J. 2019. V. 60. № 2. P. 477–481. https://doi.org/10.1536/ihj.18-167
  27. Frade A.F., Laugier L., Ferreira L.R. et al. Myocardial infarction-associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic Chagas disease // J. Infect. Dis. 2016. V. 214. № 1. P. 161–165. https://doi.org/10.1093/infdis/jiw095
  28. Mazurek S., Kim G.H. Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy // Biochim. Biophys. Acta Mol. Basis Dis. 2017. V. 863. № 8. P. 2064–2069. https://doi.org/10.1016/j.bbadis.2017.04.020
  29. Mansueto G., Benincasa G., Della Mura N. et al. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: a focus on cell-free DNA and microRNAs // J. Clin. Pathol. 2020. V. 73. № 9. P. 535–543. https://doi.org/10.1136/jclinpath-2019-206404
  30. Calderon-Dominguez M., Belmonte T., Quezada-Feijoo M. et al. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology // Transl. Res. 2020. V. 215. P. 86–101. https://doi.org/10.1016/j.trsl.2019.08.007
  31. Pagiatakis C., Di Mauro V. The emerging role of epigenetics in therapeutic targeting of cardiomyopathies // Int. J. Mol. Sci. 2021. V. 22. № 16. P. 8721. https://doi.org/10.3390/ijms22168721
  32. Ke X., Lin Z., Ye Z. et al. Histone deacetylases in the pathogenesis of diabetic cardiomyopathy // Front. Endocrinol. (Lausanne). 2021. V. 12. P. 679655. https://doi.org/10.3389/fendo.2021.679655
  33. Mittal A., Garg R., Bahl A., Khullar M. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy // Front. Cardiovasc. Med. 2021. V. 8. P. 725532. https://doi.org/10.3389/fcvm.2021.725532
  34. Scolari F.L., Faganello L.S., Garbin H.I. et al. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy // Int. J. Cardiol. 2021. V. 327. P. 146–154. https://doi.org/10.1016/j.ijcard.2020.11.004
  35. Guo Y., Feng X., Wang D. et al. Long non-coding RNA: A key regulator in the pathogenesis of diabetic cardiomyopathy // Front. Cardiovasc. Med. 2021 V. 8. P. 655598. https://doi.org/10.3389/fcvm.2021.655598
  36. Ntelios D., Georgiou E., Alexouda S. et al. A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: The case of hypertrophic cardiomyopathy // Heart Fail. Rev. 2022. V. 27. № 1. P. 281–294. https://doi.org/10.1007/s10741-021-10084-y
  37. ClinGen [Electronic resource]. URL: https://clinicalgenome.org/ Accessed 03.2022.
  38. UniProt [Electronic resource]. URL: https://www.uniprot.org/ Accessed 03.2022.
  39. Gherardi S., Bovolenta M., Passarelli C. et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis‑acting DNA elements that govern muscle dystrophin expression // Biochim. Biophys. Acta Gene Regul. Mech. 2017. V. 1860. № 11. P. 1138–1147. https://doi.org/10.1016/j.bbagrm.2017.08.010
  40. Zhang X., Shao X., Zhang R. et al. Integrated analysis reveals the alterations that LMNA interacts with euchromatin in LMNA mutation-associated dilated cardiomyopathy // Clin. Epigenetics. 2021. V. 13. № 1. P. 3. https://doi.org/10.1186/s13148-020-00996-1
  41. Cheedipudi S.M., Matkovich S.J., Coarfa C. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and dna methylation in human dilated cardiomyopathy // Circ. Res. 2019. V. 124. № 8. P. 1198–1213. https://doi.org/10.1161/CIRCRESAHA.118.314177
  42. Zhao W., Qian Lu, Luo J. et al. Cardiac troponin I R193H mutant interacts with HDAC1 to repress phosphodiesterase 4D expression in cardiomyocytes // Genes Dis. 2020. V. 8. № 4. P. 569–579. https://doi.org/10.1016/j.gendis.2020.01.004
  43. Simple ClinVar [Electronic resource]. URL: https://simple-clinvar.broadinstitute.org/ Accessed 03.2022.
  44. Shah P.P., Lv W., Rhoades J.H. et al. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and derepress alternative fate genes // Cell Stem Cell. 2021. V. 28. № 5. P. 938–954.e9. https://doi.org/10.1016/j.stem.2020.12.016
  45. Guénantin A.C., Jebeniani I., Leschik J. et al. Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy // J. Clin. Invest. 2021. V. 131. № 1. P. e136488. https://doi.org/10.1172/JCI136488
  46. Johnston J.R., Selgrade D.F., McNally E.M. Epigenetic reprogramming to prevent genetic cardiomyopathy // J. Clin. Invest. 2021. V. 131. № 1. P. e143684. https://doi.org/10.1172/JCI143684
  47. Koczor C.A., Lee E.K., Torres R.A. et al. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis // Physiol. Genomics. 2013. V. 45. № 14. P. 597–605. https://doi.org/10.1152/physiolgenomics.00013.2013
  48. Pepin M.E., Ha C.M., Crossman D.K. et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure // Lab. Invest. 2019. V. 99. № 3. P. 371–386. https://doi.org/10.1038/s41374-018-0104-x
  49. Zhao W., Wu X., Wang Z. et al. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations // Sci. China Life Sci. 2020. V. 63. № 4. P. 563–570. https://doi.org/10.1007/s11427-018-9463-9
  50. Liu C.F., Abnousi A., Bazeley P. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy // J. Mol. Cell. Cardiol. 2020. V. 145. P. 30–42. https://doi.org/10.1016/j.yjmcc.2020.06.001
  51. Zhang W., Qu J., Liu G.H., Belmonte J.C.I. The ageing epigenome and its rejuvenation // Nat. Rev. Mol. Cell. Biol. 2020. V. 21. № 3. P. 137–150. https://doi.org/10.1038/s41580-019-0204-5
  52. Pal S., Tyler J.K. Epigenetics and aging // Sci. Adv. 2016. V. 2. № 7. P. e1600584. https://doi.org/10.1126/sciadv.1600584
  53. Yang B., Zhao H., Dong R. MiR-449 improves cardiac function by regulating HDAC1 and cTnI // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24. № 24. P. 12827–12835. https://doi.org/10.26355/eurrev_202012_24184
  54. Zhang C.L., McKinsey T.A., Chang S. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy // Cell. 2002. V. 110. № 4. P. 479–488. https://doi.org/10.1016/s0092-8674(02)00861-9
  55. Han P., Hang C.T., Yang J., Chang C.P. Chromatin remodeling in cardiovascular development and physiology // Circ. Res. 2011. V. 108. № 3. P. 378–396. https://doi.org/10.1161/CIRCRESAHA.110.224287
  56. Hohl M., Wagner M., Reil J.C. et al. HDAC4 controls histone methylation in response to elevated cardiac load // J. Clin. Invest. 2013. V. 123. № 3. P. 1359–1370. https://doi.org/10.1172/JCI61084
  57. Theis J.L., Sharpe K.M., Matsumoto M.E. et al. Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy // Circ. Cardiovasc. Genet. 2011. V. 4. № 6. P. 585–594. https://doi.org/10.1161/CIRCGENETICS.111.961052
  58. Ai S., Peng Y., Li C. et al. EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent // Elife. 2017. V. 6. P. e24570. https://doi.org/10.7554/eLife.24570
  59. Kao Y.H., Liou J.P., Chung C.C. et al. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure // Int. J. Cardiol. 2013. V. 168. № 4. P. 4178–4183. https://doi.org/10.1016/j.ijcard.2013.07.111
  60. Montgomery R.L., Davis C.A., Potthoff M.J. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility // Genes Dev. 2007. V. 21. № 14. P. 1790–1802. https://doi.org/10.1101/gad.1563807
  61. Montgomery R.L., Potthoff M.J., Haberland M. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice // J. Clin. Invest. 2008. V. 118. № 11. P. 3588–3597. https://doi.org/10.1172/JCI35847
  62. Ito E., Miyagawa S., Fukushima S. et al. Histone modification is correlated with reverse left ventricular remodeling in nonischemic dilated cardiomyopathy // Ann. Thorac. Surg. 2017. V. 104. № 5. P. 1531–1539. https://doi.org/10.1016/j.athoracsur.2017.04.046
  63. Fan S., Zhang M.Q., Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands // Biochem. Biophys. Res. Commun. 2008. V. 374. № 3. P. 559–564. https://doi.org/10.1016/j.bbrc.2008.07.077
  64. Cedar H., Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms // Nat. Rev. Genet. 2009. V. 10. № 5. P. 295–304. https://doi.org/10.1038/nrg2540
  65. Glezeva N., Moran B., Collier P. et al. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes // Circ. Heart. Fail. 2019. V. 12. № 3. P. e005765. https://doi.org/10.1161/CIRCHEARTFAILURE.118.00-5765
  66. Morival J.L.P., Widyastuti H.P., Nguyen C.H.H. et al. DNA methylation analysis reveals epimutation hotspots in patients with dilated cardiomyopathy-associated laminopathies // Clin. Epigenetics. 2021. V. 13. № 1. P. 139. https://doi.org/10.1186/s13148-021-01127-0
  67. Wu T.T., Ma Y.W., Zhang X. et al. Myocardial tissue-specific Dnmt1 knockout in rats protects against pathological injury induced by Adriamycin // Lab. Invest. 2020. V. 100. № 7. P. 974–985. https://doi.org/10.1038/s41374-020-0402-y
  68. Fang X., Robinson J., Wang-Hu J. et al. cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes // Am. J. Physiol. Cell. Physiol. 2015. V. 309. № 6. P. C425–C436. https://doi.org/10.1152/ajpcell.00058.2015
  69. Bain C.R., Ziemann M., Kaspi A. et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure // ESC Heart Fail. 2020. V. 7. № 5. P. 2468–2478. https://doi.org/10.1002/ehf2.12810
  70. Movassagh M., Choy M.K., Goddard M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure // PLoS One. 2010. V. 5. № 1. P. e8564. https://doi.org/10.1371/journal.pone.0008564
  71. Koczor C.A., Torres R.A., Fields E.J. et al. Thymidine kinase and mtDNA depletion in human cardiomyopathy: Epigenetic and translational evidence for energy starvation // Physiol. Genomics. 2013. V. 45. № 14. P. 590–596. https://doi.org/10.1152/physiolgenomics.00014.2013
  72. Haas J., Frese K.S., Park Y.J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy // EMBO Mol. Med. 2013. V. 5. № 3. P. 413–429. https://doi.org/10.1002/emmm.201201553
  73. Jo B.S., Koh I.U., Bae J.B. et al. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy // Genomics. 2016. V. 108. № 2. P. 84–92. https://doi.org/10.1016/j.ygeno.2016.07.001
  74. Jo B.S., Koh I.U., Bae J.B. et al. Data of methylome and transcriptome derived from human dilated cardiomyopathy // Data Brief. 2016. V. 9. P. 382–387. https://doi.org/10.1016/j.dib.2016.09.006
  75. Meder B., Haas J., Sedaghat-Hamedani F. et al. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure // Circulation. 2017. V. 136. № 16. P. 1528–1544. https://doi.org/10.1161/CIRCULATIONAHA.117.027355
  76. Li B., Feng Z.H., Sun H. et al. The blood genome-wide DNA methylation analysis reveals novel epigenetic changes in human heart failure // Eur. Rev. Med. Pharmacol. Sci. 2017. V. 21. № 8. P. 1828–1836.
  77. Ortega A., Tarazón E., Gil-Cayuela C. et al. ASB1 differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in end-stage heart failure patients // ESC Heart Fail. 2018. V. 5. № 4. P. 732–737. https://doi.org/10.1002/ehf2.12289
  78. Gi W.T., Haas J., Sedaghat-Hamedani F. et al. Epigenetic regulation of alternative mRNA splicing in dilated cardiomyopathy // J. Clin. Med. 2020. V. 9. № 5. P. 1499. https://doi.org/10.3390/jcm9051499
  79. Watanabe T., Okada H., Kanamori H. et al. In situ nuclear DNA methylation in dilated cardiomyopathy: an endomyocardial biopsy study // ESC Heart Fail. 2020. V. 7. № 2. P. 493–502. https://doi.org/10.1002/ehf2.12593
  80. Haas J., Frese K.S., Sedaghat-Hamedani F. et al. Energy metabolites as biomarkers in ischemic and dilated cardiomyopathy // Int. J. Mol. Sci. 2021. V. 22. № 4. P. 1999. https://doi.org/10.3390/ijms22041999
  81. Liu L., Huang J., Liu Y. et al. Multiomics analysis of transcriptome, epigenome, and genome uncovers putative mechanisms for dilated cardiomyopathy // Biomed. Res. Int. 2021. V. 2021. P. 6653802. https://doi.org/10.1155/2021/6653802
  82. Tabish A.M., Arif M., Song T. et al. Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy // Am. J. Physiol. Heart. Circ. Physiol. 2019. V. 317. № 1. P. H168–H180. https://doi.org/10.1152/ajpheart.00758.2018
  83. Zhang P., Li T., Liu Y.Q. et al. Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice // FASEB J. 2019. V. 33. № 11. P. 12240–12252. https://doi.org/10.1096/fj.201900100R
  84. Mittal A., Sharma R., Prasad R. et al. Role of cardiac TBX20 in dilated cardiomyopathy // Mol. Cell. Biochem. 2016. V. 414. № 1–2. P. 129–136. https://doi.org/10.1007/s11010-016-2666-5
  85. Kmietczyk V., Riechert E., Kalinski L. et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth // Life Sci. Alliance. 2019. V. 2. № 2. P. e201800233. https://doi.org/10.26508/lsa.201800233
  86. Moore J.B. 4th, Zhao J., Keith M.C. et al. The epigenetic regulator HDAC1 modulates transcription of a core cardiogenic program in human cardiac mesenchymal stromal cells through a p53-dependent mechanism // Stem Cells. 2016. V. 34. № 12. P. 2916–2929. https://doi.org/10.1002/stem.2471
  87. Williams A.M., He W., Li Y. et al. Histone deacetylase inhibition attenuates cardiomyocyte hypoxia-reoxygenation injury // Curr. Mol. Med. 2018. V. 18. № 10. P. 711–718. https://doi.org/10.2174/1566524019666190208102729
  88. Jiang D.S., Yi X., Li R. et al. The histone methyltransferase mixed lineage leukemia (MLL) 3 may play a potential role on clinical dilated cardiomyopathy // Mol. Med. 2017. V. 23. P. 196–203. https://doi.org/10.2119/molmed.2017.00012
  89. Watson C.J., Horgan S., Neary R. et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis // J. Cardiovasc. Pharmacol. Ther. 2016. V. 21. № 1. P. 127–137. https://doi.org/10.1177/1074248415591698
  90. Pepin M.E., Drakos S., Ha C.M. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure // Am. J. Physiol. Heart Circ. Physiol. 2019. V. 317. № 4. P. H674–H684. https://doi.org/10.1152/ajpheart.00016.2019
  91. Horvath S. DNA methylation age of human tissues and cell types // Genome Biol. 2013. V. 14. № 10. P. R115. https://doi.org/10.1186/gb-2013-14-10-r115
  92. Кучер А.Н., Назаренко М.С., Марков А.В. и др. Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека // Биохимия. 2017. Т. 82. Вып. 6. С. 923–933.
  93. Forini F., Kusmic C., Nicolini G. et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis // Endocrinology. 2014. V. 155. № 11. P. 4581–4590. https://doi.org/10.1210/en.2014-1106
  94. Mathiyalagan P., Okabe J., Chang L. et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart // Nucl. Acids Res. 2014. V. 42. № 2. P. 790–803. https://doi.org/10.1093/nar/gkt896
  95. Harikrishnan K.N., Okabe J., Mathiyalagan P., Khan A.W. et al. Sex-based mhrt methylation chromatinizes MeCP2 in the heart // iScience. 2019. V. 17. P. 288–301. https://doi.org/10.1016/j.isci.2019.06.031
  96. Dal-Pra S., Hodgkinson C.P., Mirotsou M. et al. Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo // Circ. Res. 2017. V. 120. № 9. P. 1403–1413. https://doi.org/10.1161/CIRCRESAHA.116.308741

Copyright (c) 2023 А.Н. Кучер, М.С. Назаренко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies