Biased Expression of Parental Alleles in the Human Placenta

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The biased expression of parental alleles plays a fundamental role in the formation of the placenta as a multifunctional organ necessary for the development and survival of the fetus. First of all, this is expressed in the phenomenon of imprinting, when only the maternal or paternal allele is expressed in placental cells. The placenta uses an extended range of imprinting mechanisms compared to the embryo – histone modifications that suppress or, conversely, activate the expression of nearby genes, regulatory sequences and genes derived from retroviruses or retrotransposons, microRNAs that function as antisense RNAs and participate in transcriptional and post-transcriptional regulation of gene expression. In addition, incomplete suppression of the activity of one of the parental alleles is detected in the placenta, leading to a biased imprinted expression of some genes. This review shows the role of biased expression of parental alleles in the development of placental structures of an embryo, discusses the mechanisms of epigenetic control of parental alleles, mainly expressed in the placenta.

Sobre autores

E. Sazhenova

Research Institute of Medical Genetics, Tomsk National Research Medical
Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

S. Vasilev

Research Institute of Medical Genetics, Tomsk National Research Medical
Center of the Russian Academy of Sciences

Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

I. Lebedev

Research Institute of Medical Genetics, Tomsk National Research Medical
Center of the Russian Academy of Sciences

Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

Bibliografia

  1. Gui B., Slone J., Huang T. Perspective: Is random monoallelic expression a contributor to phenotypic variability of autosomal dominant disorders? // Front. Genet. 2017. V. 29(8). P. e191. https://doi.org/10.3389/fgene.2017.00191
  2. Pilvar D., Reiman M., Pilvar A., Laan M. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy // Clin. Epigenet. 2019. V. 11. P. e94. https://doi.org/10.1186/s13148-019-0692-3
  3. Tucci V., Isles A.R., Kelsey G. et al. Genomic imprinting and physiological processes in mammals // Cell. 2019. V. 176. P. 952–965. https://doi.org/10.1016/j.cell.2019.01.043
  4. Bogutz A.B., Brind A.J., Kobayashi H. et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters // Nat. Commun. 2019. V. 10. P. e5674. https://doi.org/10.1038/s41467-019-13662-9
  5. Raas M.W., Zijlmans D.W., Vermeulen M. et al. There is another: H3K27me3-mediated genomic imprinting // Trends Genet. 2022. V. 38(1). P. 82–96. https://doi.org/10.1016/j.tig.2021.06.017
  6. Cierna Z., Varga I., Danihel L.J. et al. Intermediate trophoblast-A distinctive, unique and often unrecognized population of trophoblastic cells // Ann. Anat. 2016. V. 204. P. 45–50. https://doi.org/10.1016/j.aanat.2015.10.003
  7. Norwitz E.R. Defective implantation and placentation: Laying the blueprint for pregnancy complications // Reprod. Biomed. Online. 2006. V. 13(4). P. 591–599. https://doi.org/10.1016/s1472-6483(10)60649-9
  8. Thamban T., Agarwaal V., Khosla S. Role of genomic imprinting in mammalian development // J. Biosci. 2020. V. 45. P. e20.
  9. Varrault A., Dantec C., Le Digarcher A. et al. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network // Nucl. Acids Res. 2017. V. 45(18). P. 10466–10480. https://doi.org/10.1093/nar/gkx672
  10. Hanna C.W. Placental imprinting: Emerging mechanisms and functions // PLoS Genet. 2020. V. 16(4). P. e1008709. https://doi.org/10.1371/journal.pgen.1008709
  11. Starks R.R., Kaur H., Tuteja G. Mapping cis-regulatory elements in the midgestation mouse placenta // Sci. Rep. 2021. V. 11. P. e22331. https://doi.org/10.1038/s41598-021-01664-x
  12. Woods L., Perez-Garcia V., Hemberger M. Regulation of placental development and its impact on fetal growth-new insights from mouse models // Front. Endocrinol. (Lausanne). 2018. V. 9. P. e570. https://doi.org/10.3389/fendo.2018.00570
  13. Miri K., Latham K., Panning B. et al. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development // Development. 2013. V. 140. P. 4480–4489. https://doi.org/10.1242/dev.096511
  14. Tang P., Miri K., Varmuza S. Unique trophoblast chromatin environment mediated by the PcG protein SFMBT2 // Biol. Open. 2019. V. 8(8). P. e043638. https://doi.org/10.1242/bio.043638
  15. Andergassen D., Dotter C.P., Wenzel D. et al. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression // Elife. 2017. V. 6. P. e25125. https://doi.org/10.7554/eLife.25125
  16. Schertzer M.D., Braceros K.C., Starmer J. et al. lncRNA‑induced spread of Polycomb controlled by genome architecture, RNA abundance, and CpG island DNA // Mol. Cell. 2019. V. 75(3). P. 523–537. https://doi.org/10.1016/j.molcel.2019.05.028
  17. Bartel D.P. Metazoan MicroRNAs // Cell. 2018. V. 173. P. 20–51. https://doi.org/10.1016/j.cell.2018.03.006
  18. Hayder H., O’Brien J., Nadeem U., Peng C. Micro-RNAs: Crucial regulators of placental development // Reproduction. 2018. V. 155(6). P. R259–R271. https://doi.org/10.1530/REP-17-0603
  19. Malnou E.C., Umlauf D., Mouysset M., Cavaille J. Imprinted microRNA gene clusters in the evolution, development, and functions of mammalian placenta // Front. Genet. 2019. V. 9. P. e706. https://doi.org/10.3389/fgene.2018.00706
  20. Inno R., Kikas T., Lillepea K., Laan M. Coordinated expressional landscape of the human placental miRNome and transcriptome // Front. Cell Dev. Biol. 2021. V. 9. P. e697947. https://doi.org/10.3389/fcell.2021.697947
  21. Kaneko-Ishino T., Ishino F. Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals // Dev. Growth Differ. 2010. V. 52(6). P. 533–543. https://doi.org/10.1111/j.1440-169X.2010.01194.x
  22. Ito M., Sferruzzi-Perri A.N., Edwards C.A. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development // Development. 2015. V. 142(14). P. 2425–2430. https://doi.org/10.1242/dev.121996
  23. Bentwich I. Prediction and validation of microRNAs and their targets // FEBS Lett. 2005. V. 579(26). P. 5904–5910. https://doi.org/10.1016/j.febslet.2005.09.040
  24. Haig D., Mainieri A. The evolution of imprinted microRNAs and their RNA targets // Genes (Basel). 2020. V. 11(9). P. e1038. https://doi.org/10.3390/genes11091038
  25. Noguer-Dance M., Abu-Amero S., Al-Khtib M. et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta // Hum. Mol. Genet. 2010. V. 19(18). P. 3566–3582. https://doi.org/10.1093/hmg/ddq272
  26. Gottlieb A., Flor I., Nimzyk R. et al. The expression of miRNA encoded by C19MC and miR-371-3 strongly varies among individual placentas but does not differ between spontaneous and induced abortions // Protoplasma. 2021. V. 258(1). P. 209–218. https://doi.org/10.1007/s00709-020-01548
  27. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas // Am. J. Physiol. Endocrinol. Metab. 2013. V. 304(8). P. 836–843. https://doi.org/10.1152/ajpendo.00660.2012
  28. Munjas J., Sopic M., Stefanovic A. et al. Non-coding RNAs in preeclampsia-molecular mechanisms and diagnostic potential // Int. J. Mol. Sci. 2021. V. 22(19). P. e10652. https://doi.org/10.3390/ijms221910652
  29. Delorme-Axford E., Donker R.B., Mouillet J.F. et al. Human placental trophoblasts confer viral resistance to recipient cells // Proc. Natl Acad. Sci. USA. 2013. V. 110. P. 12048–12053. https://doi.org/10.1073/pnas.1304718110
  30. Ishida Y., Zhao D., Ohkuchi A. et al. Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy // Int. J. Mol. Med. 2015. V. 35. P. 1511–1524. https://doi.org/10.3892/ijmm.2015.2157
  31. Inoue K., Hirose M., Inoue H. et al. The rodent-specific microRNA cluster within the Sfmbt2 gene is imprinted and essential for placental development // Cell Rep. 2017. V. 19. P. 949–956. https://doi.org/10.1016/j.celrep.2017.04.018
  32. Farhadova S., Gomez-Velazquez M., Feil R. Stability and lability of parental methylation imprints in development and disease // Genes (Basel). 2019. V. 10(12). P. e999. https://doi.org/10.3390/genes10120999
  33. Zeng Y., Chen T. DNA methylation reprogramming during mammalian development // Genes (Basel). 2019. V. 10(4). P. e257. https://doi.org/10.3390/genes10040257
  34. Huang Y., Liu H., Du H. et al. Developmental features of DNA methylation in CpG islands of human gametes and preimplantation embryos // Exp. Ther. Med. 2019. V. 17(6). P. 4447–4456. https://doi.org/10.3892/etm.2019.7523
  35. Takahashi N., Coluccio A., Thorball C.W. et al. ZNF445 is a primary regulator of genomic imprinting // Genes Dev. 2019. V. 33. P. 49–54. https://doi.org/10.1101/gad.320069.118
  36. Decato B.E., Lopez-Tello J., Sferruzzi-Perri A.N. et al. DNA methylation divergence and tissue specialization in the developing mouse placenta // Mol. Biol. Evol. 2017. V. 34. P. 1702–1712. https://doi.org/10.1093/molbev/msx112
  37. Duffie R., Ajjan S., Greenberg M.V. et al. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals // Genes Dev. 2014. V. 28. P. 463–478. https://doi.org/10.1101/gad.232058.113
  38. Chen Z., Djekidel M.N., Zhang Y. Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos // Nat. Genet. 2021. V. 53(4). P. 551–563. https://doi.org/10.1038/s41588-021-00821-2
  39. Jambhekar A., Dhall A., Shi Y. Roles and regulation of histone methylation in animal development // Nat. Rev. Mol. Cell Biol. 2019. V. 20(10). P. 625–641. https://doi.org/10.1038/s41580-019-0151-1
  40. Healy E., Mucha M., Glancy E. et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation // Mol. Cell. 2019. V. 76(3). P. 437–452. https://doi.org/10.1016/j.molcel.2019.08.012
  41. Cheutin T., Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding // Crit. Rev. Biochem. Mol. Biol. 2019. V. 54(5). P. 399–417. https://doi.org/10.1080/10409238.2019.1679082
  42. Yang P., Wang Y., Macfarlan T.S. The role of KRAB-ZFPs in transposable element repression and mammalian evolution // Trends Genet. 2017. V. 33(11). P. 871–881. https://doi.org/10.1016/j.tig.2017.08.006
  43. Xu Q., Xie W. Epigenome in early mammalian development: inheritance, reprogramming and establishment // Trends Cell Biol. 2018. V. 28. P. 237–253.
  44. Prokopuk L., Stringer J.M., White C.R. et al. Loss of maternal EED results in postnatal overgrowth // Clin. Epigenetics. 2018. V. 10(1) P. e95. https://doi.org/10.1186/s13148-018-0526-8
  45. Hanna C.W., Gavin K. Features and mechanisms of canonical and noncanonical genomic imprinting // Genes Dev. 2021. V. 35(11–12). P. 821–834. https://doi.org/10.1101/gad.348422.121
  46. Hanna C.W. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues // Genome Biol. 2019. V. 20. P. e225. https://doi.org/10.1186/s13059-019-1833-x
  47. Chen Z., Yin Q., Inoue A. et al. Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells // Sci. Adv. 2019. V. 5(12). P. e7246. https://doi.org/10.1126/sciadv.aay7246
  48. Zhang W., Chen Z., Yin Q. et al. Maternal-biased H3K27me3 correlates with paternal-specific gene expression in the human morula // Genes Dev. 2019. V. 33(7–8). P. 382–387. https://doi.org/10.1101/gad.323105.118
  49. Enriquez-Gasca R., Gould P.A., Rowe H.M. Host gene regulation by transposable elements: the new, the old and the ugly // Viruses. 2020. V. 12(10). P. e1089. https://doi.org/10.3390/v12101089
  50. Senft A.D., Macfarlan T.S. Transposable elements shape the evolution of mammalian development // Nat. Rev. Genet. 2021. V. 22(11). P. 691–711. https://doi.org/10.1038/s41576-021-00385-1
  51. Zhang X., Muglia L.J. Baby’s best Foe-riend: Endogenous retroviruses and the evolution of eutherian reproduction // Placenta. 2021. V. 15(113). P. 1–7. https://doi.org/10.1016/j.placenta.2021.02.011
  52. Schust D.J., Bonney E.A., Sugimoto J. et al. The immunology of syncytialized trophoblast // Int. J. Mol. Sci. 2021. V. 2(4). P. e1767. https://doi.org/10.3390/ijms22041767
  53. Sugimoto J., Sugimoto M., Bernstein H. et al. A novel human endogenous retroviral protein inhibits cell-cell fusion // Sci. Rep. 2013. V. 3. P. e1462. https://doi.org/10.1038/srep01462
  54. Roberts R.M., Ezashi T., Schulz L.C. et al. Syncytins expressed in human placental trophoblast // Placenta. 2021. V. 113. P. 8–14. https://doi.org/10.1016/j.placenta.2021.01.006
  55. Каталог импринтированных генов. http://igc.otago.ac.nz.
  56. Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta // Reproduction. 2016. V. 152. P. 179–189. https://doi.org/10.1530/REP-16-0325
  57. Henke C., Strissel P.L., Schubert M.T. Selective expression of sense and antisense transcripts of the sushi-ichi-related retrotransposon-derived family during mouse placentogenesis // Retrovirology. 2015. V. 12. P. e9. https://doi.org/10.1186/s12977-015-0138-8
  58. Miao J., Zhu Y., Xu L. et al. MiR‑181b‑5Pinhibits trophoblast cell migration and invasion through targeting S1PR1 in multiple abnormal trophoblast invasion‑related events // Mol. Med. Rep. 2020. V. 22(5). P. 4442–4451. https://doi.org/10.3892/mmr.2020.11515
  59. Barlow D.P. Methylation and imprinting: From host defense to gene regulation? // Science. 1993. V. 260. P. 309–310. https://doi.org/10.1126/science.8469984
  60. Ondicova M., Oakey R.J., Walsh C.P. Is imprinting the result of “friendly fire” by the host defense system? // PLoS Genet. 2020. V. 16. P. e1008599. https://doi.org/10.1126/science.8469984
  61. Jahner D., Stuhlmann H., Stewart C.L. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis // Nature. 1982. V. 298. P. 623–628. https://doi.org/10.1038/298623a0
  62. Chaillet J., Vogt T., Beier D., Leder P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis // Cell. 1991. V. 66. P. 77–83. https://doi.org/10.1016/0092-8674(91)90140-t
  63. Walter J., Hutter B., Khare T., Paulsen M. Repetitive elements in imprinted genes // Cytogenet. Genome Res. 2006. V. 113. P. 109–115. https://doi.org/10.1159/000090821
  64. Cowley M., de Burca A., McCole R.B. et al. Short Interspersed Element (SINE) depletion and Long Interspersed Element (LINE) abundance are not features universally required for imprinting // PLoS One. 2011. V. 6. P. e18953. https://doi.org/10.1371/journal.pone.0018953
  65. Wood A.J., Bourc’his D., Bestor T.H., Oakey R.J. Allele-specific demethylation at an imprinted mammalian promoter // Nucl. Acids Res. 2007. V. 35. P. 7031–7039. https://doi.org/10.1093/nar/gkm742
  66. Wood A.J., Roberts R.G., Monk D. et al. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation // PLoS Genet. 2007. V. 3. P. e20. https://doi.org/10.1371/journal.pgen.0030020
  67. Youngson N.A., Kocialkowski S., Peel N., Ferguson-Smith A.C. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting // J. Mol. Evol. 2005. V. 61. P. 481–490. https://doi.org/10.1007/s00239-004-0332-0
  68. Cowley M., Oakey R.J. Retrotransposition and genomic imprinting // Brief. Funct. Genomics. 2010. V. 9. P. 340–346. https://doi.org/10.1093/bfgp/elq015
  69. Thomas J.H., Schneider S. Coevolution of retroelements and tandem zinc finger genes // Genome Res. 2011. V. 21. P. 1800–1812. https://doi.org/10.1101/gr.121749.111
  70. Yang P., Wang Y., Hoang D. et al. A placental growth factor is silenced in mouse embryos by the zinc finger protein ZFP568 // Science. 2017. V. 356. P. 757–759. https://doi.org/10.1126/science.aah6895
  71. Helleboid P., Heusel M., Duc J. et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification // EMBO J. 2019. V. 38. P. e101220. https://doi.org/10.15252/embj.2018101220
  72. Jacobs F.M., Greenberg D., Nguyen N. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons // Nature. 2014. V. 516. P. 242–245.
  73. Rowe H.M., Friedli M., Offner S. et al. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET // Development. 2013. V. 140. P. 519–529. https://doi.org/10.1242/dev.087585
  74. Imbeault M., Helleboid P.Y., Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks // Nature. 2017. V. 543. P. 550–554. https://doi.org/10.1038/nature21683
  75. Strogantsev R., Krueger F., Yamazawa K. et al. Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression // Genome Biol. 2015. V. 16. P. e112. https://doi.org/10.1186/s13059-015-0672-7
  76. Moore T., Haig D. Genomic imprinting in mammalian development: A parental tug-of-war // TIG. 1991. V. 7. P. 45–49. https://doi.org/10.1016/0168-9525(91)90230-N
  77. Quenneville S., Verde G., Corsinotti A. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions // Mol. Cell. 2011. V. 44. P. 361–372. https://doi.org/10.1016/j.molcel.2011.08.032
  78. Li X., Ito M., Zhou F. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints // Dev. Cell. 2008. V. 15. P. 547–557. https://doi.org/10.1016/j.devcel.2008.08.014
  79. Criscione S.W., Theodosakis N., Micevic G. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts // BMC Genomics. 2016. V. 17. P. e463. https://doi.org/10.1186/s12864-016-2800-5
  80. Castro-Diaz N., Ecco G., Coluccio A. et al. Evolutionally dynamic L1 regulation in embryonic stem cells // Genes Dev. 2014. V. 28(13). P. 397–409. https://doi.org/10.1101/gad.241661.114
  81. Vincenz C., Lovett J.L., Wu W. et al. Loss of imprinting in human placentas is widespread, coordinated, and predicts birth phenotypes // Mol. Biol. Evol. 2020. V. 37(2). P. 429–441. https://doi.org/10.1093/molbev/msz226
  82. Wang X.X., Miller D.C., Harman R. et al. Paternal expressed genes predominate in the placenta // Proc. Natl Acad. Sci. USA. 2013. V. 110. P. 10705–10710. https://doi.org/10.1073/pnas.1308998110
  83. Monteagudo-Sánchez A., Sánchez-Delgado M., Hernandez J.R. et al. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction // Clin. Epigenetics. 2019. V. 11(1). P. e35. https://doi.org/10.1186/s13148-019-0630-4
  84. Kappil M.A., Green B.B., Armstrong D.A. et al. Placental expression profile of imprinted genes impacts birth weight // Epigenetics. 2015. V. 10(9). P. 842–849. https://doi.org/10.1080/15592294.2015.1073881
  85. Court F., Tayama C., Romanelli V. et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment // Genome Res. 2014. V. 24(4). P. 554–569. https://doi.org/10.1101/gr.164913.113
  86. Hanna C.W., Penaherrera M.S., Saadeh H. et al. Pervasive polymorphic imprinted methylation in the human // Genome Res. 2016. V. 26(6). P. 756–767. https://doi.org/10.1101/gr.196139.115
  87. Sanchez-Delgado M., Riccio A., Eggermann T. et al. Causes and consequences of multi-locus imprinting disturbances in humans // Trends Genet. 2016. V. 32(7). P. 444–455. https://doi.org/10.1016/j.tig.2016.05.001
  88. Xu D., Zhang C., Li J. et al. Polymorphic imprinting of SLC38A4 gene in bovine placenta // Biochem. Genet. 2018. V. 56(6). P. 639–649. https://doi.org/10.1007/s10528-018-9866-5
  89. Sanli I., Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression // Int. J. Biochem. Cell Biol. 2015. V. 67. P. 139–147. https://doi.org/10.1016/j.biocel.2015.04.004
  90. Саженова Е.А., Никитина Т.В., Скрябин Н.А. и др. Эпигенетический статус импринтированных генов в плаценте при привычном невынашивании беременности // Генетика. 2017. Т. 53. № 3. С. 364–377. https://doi.org/10.7868/s0016675817020096
  91. Sazhenova E.A., Nikitina T.V., Vasilyev S.A. et al. NLRP7 variants in spontaneous abortions with multilocus imprinting disturbances from women with recurrent pregnancy loss // J. Assisted Reprod. Genet. 2021. V. 38(11). P. 2893–2908. https://doi.org/10.1007/s10815-021-02312-z
  92. Hirasawa R., Chiba H., Kaneda M. et al. Maternal and zygotic dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development // Genes Dev. 2008. V. 22. P. 1607–1616. https://doi.org/10.1101/gad.1667008
  93. Wyns C., De Geyter C., Calhaz-Jorge C. et al. ART in Europe, 2017: Results generated from European registries by ESHRE. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE) // Hum. Reprod. Open. 2021. V. 2021(3). P. e026. https://doi.org/10.1093/hropen/hoab026
  94. Kobayashi H. Canonical and non-canonical genomic imprinting in rodents // Front. Cell Dev. Biol. 2021. V. 9. P. e713878. https://doi.org/10.3389/fcell.2021.713878

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (263KB)

Declaração de direitos autorais © Е.А. Саженова, С.А. Васильев, И.Н. Лебедев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies