Characterization of Novel F5 Intronic Variant Associated with Aberrant Splicing and Severe Factor V Deficiency

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Congenital factor V deficiency is a rare autosomal recessive bleeding disorder, caused by defects in F5 gene and associated with bleeding manifestations of variable severity. In this study we report molecular and functional characterization of a novel F5 variant which causes aberrant splicing and significantly reduces protein expression in a patient with severe FV deficiency. We performed F5 mutation screening and functional study in a proband (FV:C 0.4%) with a history of gastrointestinal bleeding, post-traumatic bleeding, hematomas, ecchymoses, and discomfort in ankle joints since infancy. Sequencing revealed a novel homozygous F5 gene variant NC_000001.10:169519985G>C (or NM_000130.5:c.1297 –8C>G). Bioinformatics sequence analysis predicted that this variant would lead to the acceptor site loss of the intron 8/exon 9 junction. However mRN-A analysis identified, that it also activated the aberrant splice site located 7 nucleotides upstream of the normal one and was associated with the production of an anomalous F5 transcript with retention of seven nucleotides of intron 8 resulting in a premature stop codon. We revealed no traces of normal transcript in the patient. Our findings confirm that not only changes in canonical splicing dinucleotides could significantly disrupt the splicing sites and impair pre-mRNA processing.

About the authors

O. S. Pshenichnikova

National Medical Research Center for Hematology

Author for correspondence.
Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

E. V. Yakovleva

National Medical Research Center for Hematology

Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

N. I. Zozulya

National Medical Research Center for Hematology

Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

Yu. M. Poznyakova

National Medical Research Center for Hematology

Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

E. Yu. Demidova

National Medical Research Center for Hematology

Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

V. L. Surin

National Medical Research Center for Hematology

Email: pshenichnikovaolesya@gmail.com
Russia, 125167, Moscow

References

  1. Mann K.G., Kalafatis M. Factor V: A combination of Dr Jekyll and Mr Hyde // Blood. 2003. V. 101. P. 20–30. https://doi.org/10.1182/blood-2002-01-0290
  2. Duga S., Asselta R., Tenchini M.L. Coagulation factor V // Int. J. Biochem. Cell Biol. 2004. V. 36. P. 1393–1399. https://doi.org/10.1016/j.biocel.2003.08.002
  3. Paraboschi E.M., Menegatti M., Peyvandi F. et al. Understanding the impact of aberrant splicing in coagulation factor V deficiency // Int. J. Mol. Sci. 2019. V. 20. № 4. P. 910. https://doi.org/10.3390/ijms20040910
  4. Paraboschi E.M., Menegatti M., Rimoldi V. et al. Profiling the mutational landscape of coagulation factor V deficiency // Haematologica. 2020. V. 105. № 4. P. e180–e185. https://doi.org/10.3324/haematol.2019.232587
  5. Tabibian S., Shiravand Y., Shams M. et al. A comprehensive overview of coagulation factor V and congenital factor V deficiency // Semin. Thromb. Hemost. 2019. V. 45. № 5. P. 523–543. https://doi.org/10.1055/s-0039-1687906
  6. Asselta R., Tenchini M.L., Duga S. Inherited defects of coagulation factor V: The hemorrhagic side // J. Thromb. Haemost. 2006. V. 4. № 1. P. 26–34. https://doi.org/10.1111/j.1538-7836.2005.01590.x
  7. Peyvandi F., Duga S., Akhavan S., Mannucci P.M. Rare coagulation deficiencies // Haemophilia. 2002. V. 8. № 3. P. 308–321. https://doi.org/10.1046/j.1365-2516.2002.00633.x
  8. Nuzzo F., Bulato C., Nielsen B.I. et al. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency // Haemophilia. 2015. V. 21. № 2. P. 241–248. https://doi.org/10.1111/hae.12554
  9. Dall’Osso C., Guella I., Duga S. et al. Molecular characterization of three novel splicing mutations causing factor V deficiency and analysis of the F5 gene splicing pattern // Haematologica. 2008. V. 93. № 10. P. 1505–1513. https://doi.org/10.3324/haematol.12934
  10. Castoldi E., Duckers C., Radu C. et al. Homozygous F5 deep-intronic splicing mutation resulting in severe factor V deficiency and undetectable thrombin generation in platelet-rich plasma // J. Thromb. Haemost. 2011. V. 9. № 5. P. 959–968. https://doi.org/10.1111/j.1538-7836.2011.04237.x
  11. Guella I., Paraboschi E.M., van Schalkwyk W.A. et al. Identification of the first Alu-mediated large deletion involving the F5 gene in a compound heterozygous patient with severe factor V deficiency // Thromb. Haemost. 2011. V. 106. № 2. P. 296–303. https://doi.org/10.1160/TH11-03-0149
  12. Kuang S.Q., Hasham S., Phillips M.D. et al. Characterization of a novel autosomal dominant bleeding disorder in a large kindred from east Texas // Blood. 2001. V. 97. № 6. P. 1549–1554. https://doi.org/10.1182/blood.v97.6.1549
  13. Lunghi B., Pinotti M., Maestri I. et al. Evaluation of factor V mRNA to define the residual factor V expression levels in severe factor V deficiency // Haematologica. 2008. V. 93. № 3. P. 477–478. https://doi.org/10.3324/haematol.11952
  14. Asselta R., Montefusco M.C., Duga S. et al. Severe factor V deficiency: Exon skipping in the factor V gene causing a partial deletion of the C1 domain // J. Thromb. Haemost. 2003. V. 1. № 6. P. 1237–1244. https://doi.org/10.1046/j.1538-7836.2003.00160.x
  15. van Wijk R., Nieuwenhuis K., van den Berg M. et al. Five novel mutations in the gene for human blood coagulation factor V associated with type I factor V deficiency // Blood. 2001. V. 98. № 2. P. 358–367. https://doi.org/10.1182/blood.v98.2.358
  16. Desmet F.O., Hamroun D., Lalande M. et al. Human Splicing Finder: An online bioinformatics tool to predict splicing signals // Nucl. Acids Res. 2009. V. 37. P. e67. https://doi.org/10.1093/nar/gkp215
  17. Hebsgaard S.M., Korning P.G., Tolstrup N. et al. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information // Nucl. Acids Res. 1996. V. 24. P. 3439–3452. https://doi.org/10.1093/nar/24.17.3439
  18. Reese M.G., Eeckman F.H., Kulp D., Haussler D. Improved splice site detection in Genie // J. Comput. Biol. 1997. V. 4. P. 311–323. https://doi.org/10.1089/cmb.1997.4.311
  19. Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F. et al. Predicting splicing from primary sequence with deep learning // Cell. 2019. V. 176. № 3. P. 535–548. e24. https://doi.org/10.1016/j.cell.2018.12.015
  20. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology // Genet. Med. 2015. V. 17. № 5. P. 405–424. https://doi.org/10.1038/gim.2015.30
  21. Hug N., Longman D., Cáceres J.F. Mechanism and regulation of the nonsense-mediated decay pathway // Nucl. Acids Res. 2016. V. 44. № 4. P. 1483–1495. https://doi.org/10.1093/nar/gkw010
  22. Schrijver I., Koerper M.A., Jones C.D., Zehnder J.L. Homozygous factor V splice site mutation associated with severe factor V deficiency // Blood. 2002. V. 99. P. 3063–3065. https://doi.org/10.1182/blood.v99.8.3063
  23. Fu Q.H., Zhou R.F., Liu L.G. et al. Identification of three F5 gene mutations associated with inherited coagulation factor V deficiency in two Chinese pedigrees // Haemophilia. 2004. V. 10. P. 264–270. https://doi.org/10.1111/j.1365-2516.2004.00896.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (487KB)
3.

Download (111KB)

Copyright (c) 2023 О.С. Пшеничникова, Е.В. Яковлева, Н.И. Зозуля, Ю.М. Познякова, Е.Ю. Демидова, В.Л. Сурин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies