Polygenic Analysis of Cytokine and Inflammatory Genes Polymorphisms in Chronic Obstructive Pulmonary Disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic obstructive pulmonary disease (COPD) is a complex lung disease characterized by progressive airflow limitation and abnormal inflammatory response of the lungs to inhaled noxious particles or gases. COPD pathogenesis was linked to oxidative stress and systemic inflammation. We aimed to assess the association of cytokines and inflammatory genes polymorphisms and their combinations with COPD. SNPs of inflammatory genes FASLG (rs763110), IL19 (rs2243193), IL20 (rs2981573), IL24 (rs291107), PPBP (rs352010), IL4 (rs2243250), IL4 (rs2070874), С5 (rs17611), FAS (rs1800682), IL4RA (rs1805010), TGFb1 (rs1800469) was genotyped by the real-time polymerase chain reaction (PCR) among 601 COPD patients and 617 controls. Significant associations with COPD in the study group under additive genetic model were identified for IL19 (rs2243193) (P = 0.00001, OR = 0.73), IL4 (rs2243250) (P = 0.024, OR = 1.27), IL4 (rs2070874) (P = 0.00001, OR = 0.62), and for PPBP (rs352010) under the recessive model (P = 0.00001, OR = 2.34). Using the APSampler algorithm, we obtained gene-gene combinations that remained significantly associated with COPD; A allele of IL19 (rs2243193) and C allele of PPBP (rs352010) were the core element of the majority of protective patterns associated with COPD. The highest risk of COPD was conferred by combination of alleles: G of IL12A (rs2243115) with A of IL13 (rs20541) and C of IL4 (rs2070874) (OR = 2.72). The receiver operating characteristic (ROC) analysis resulted in an area under the curve (AUC) of 0.895 (95%CI 0.874–0.916) for model including SNPs: A allele of IL19 (rs2243193) and AA genotype of IL20 (rs2981573) combination, IL19 (rs2243193), IL12A (rs2243115), PPBP (rs352010), IL4 (rs2070874) together with age and smoking pack years, indicating a high ability of the model to correctly classify individuals with and without COPD.

About the authors

G. F. Korytina

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences (IBG UFRC RAS)

Author for correspondence.
Email: guly_kory@mail.ru
Russia, Ufa

Y. G. Aznabaeva

Bashkortostan State Medical University

Email: guly_kory@mail.ru
Russia, Ufa

O. V. Kochetova

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences (IBG UFRC RAS)

Email: guly_kory@mail.ru
Russia, Ufa

T. R. Nasibullin

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences (IBG UFRC RAS)

Email: guly_kory@mail.ru
Russia, Ufa

L. Z. Akhmadishina

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences (IBG UFRC RAS)

Email: guly_kory@mail.ru
Russia, Ufa

N. N. Khusnutdinova

Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences (IBG UFRC RAS)

Email: guly_kory@mail.ru
Russia, Ufa

N. Sh. Zagidullin

Bashkortostan State Medical University

Email: guly_kory@mail.ru
Russia, Ufa

T. V. Victorova

Bashkortostan State Medical University

Email: guly_kory@mail.ru
Russia, Ufa

References

  1. Barnes P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease // J. Allergy Clin. Immunol. 2016. V. 138. № 1. P. 16–27. https://doi.org/10.1016/j.jaci.2016.05.011
  2. Hurst J.R., Siddiqui M.K., Singh B. et al. A systematic literature review of the humanistic burden of COPD // Int. J. Chron. Obstruct. Pulmon. Dis. 2021. V. 16. P. 1303–1314. https://doi.org/10.2147/COPD.S296696
  3. Silverman E.K. Genetics of COPD // Annu. Rev. Physiol. 2020. V. 82. P. 413–431. https://doi.org/10.1146/annurev-physiol-021317-121224
  4. Ahmadi A., Ghaedi H., Salimian J. et al. Association between chronic obstructive pulmonary disease and interleukins gene variants: A systematic review and meta-analysis // Cytokine. 2019. V. 117. P. 65–71. https://doi.org/10.1016/j.cyto.2019.02.003
  5. Korytina G.F., Aznabaeva Y.G., Akhmadishina L.Z. et al. The relationship between chemokine and chemokine receptor genes polymorphisms and chronic obstructive pulmonary disease susceptibility in Tatar population from Russia: A case control study // Biochem. Genet. 2022. V. 60. № 1. P. 54–79. https://doi.org/10.1007/s10528-021-10087-2
  6. Korytina G.F., Akhmadishina L.Z., Aznabaeva Y.G. et al. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease // Gene. 2019. V. 692. P. 102–112. https://doi.org/10.1016/j.gene.2018.12.061
  7. Ward L.D., Kellis M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease // Nucl. Ac. Res. 2016. V. 44. № D1. P. D877–D881. https://doi.org/10.1093/nar/gkv1340
  8. Purcell S., Neale B., Todd-Brown K. et al. PLINK: A toolset for whole-genome association and population-based linkage analysis // Am. J. Hum. Genet. 2007. V. 81. № 3. P. 559–575. https://doi.org/10.1086/519795
  9. Favorov A.V., Andreewski T.V., Sudomoina M.A. et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans // Genetics. 2005. V. 171. № 4. P. 2113–2121. https://doi.org/10.1534/genetics.105.048090
  10. Корытина Г.Ф., Зулкарнеев Ш.Р., Азнабаева Ю.Г. и др. Вклад полиморфизмов генов IL12A, IL12B, IL13 и IL12RB2 в развитии хронической обструктивной болезни легких в этнической группе татар // Якутский мед. журнал. 2021. Т. 75. № 3. С. 21–25. https://doi.org/10.25789/YMJ.2021.75.05
  11. Ouyang W., Rutz S., Crellin N.K. et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease // Annu. Rev. Immunol. 2011. V. 29. P. 71–109. https://doi.org/10.1146/annurev-immunol-031210-101312
  12. Azuma Y.T., Fujita T., Izawa T. et al. IL-19 contributes to the development of nonalcoholic steatohepatitis by altering lipid metabolism // Cells. 2021. V. 10. № 12. P. 3513. https://doi.org/10.3390/cells10123513
  13. Wang W., Wang X., Yang K. et al. Association of BCL2 polymorphisms and the IL19 single nucleotide polymorphism rs2243188 with systemic lupus erythematosus // J. Int. Med. Res. 2021. V. 49. № 5. https://doi.org/10.1177/03000605211019187
  14. Leonard D., Svenungsson E., Dahlqvist J. et al. Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis // Ann. Rheum. Dis. 2018. V. 77. № 7. P. 1063–1069. https://doi.org/10.1136/annrheumdis-2017-212614
  15. Rong B., Liu Y., Li M. et al. Correlation of serum levels of HIF-1α and IL-19 with the disease progression of COPD: A retrospective study // Int. J. Chron. Obstruct. Pulmon. Dis. 2018. V. 13. P. 3791–3803. https://doi.org/10.2147/COPD.S177034
  16. Brown A.J., Joseph P.R., Sawant K.V. et al. Chemokine CXCL7 heterodimers: structural insights, CXCR2 receptor function, and glycosaminoglycan interactions // Int. J. Mol. Sci. 2017. V. 18. № 4. P. 748. https://doi.org/10.3390/ijms18040748
  17. Bdeir K., Gollomp K., Stasiak M. et al. Platelet-specific chemokines contribute to the pathogenesis of acute lung injury // Am. J. Respir. Cell Mol. Biol. 2017. V. 56. № 2. P. 261–270. https://doi.org/10.1165/rcmb.2015-0245OC
  18. Kousha A., Mahdavi Gorabi A., Forouzesh M. et al. Interleukin 4 gene polymorphism (–589C/T) and the risk of asthma: A meta-analysis and met-regression based on 55 studies // BMC Immunol. 2020. V. 21. № 1. P. 55. https://doi.org/10.1186/s12865-020-00384-7
  19. Choudhury P., Biswas S., Singh G. et al. Immunological profiling and development of a sensing device for detection of IL-13 in COPD and asthma // Bioelectrochemistry. 2022. V. 143. P. 107971. https://doi.org/10.1016/j.bioelechem.2021.107971
  20. Dosreis G.A., Borges V.M., Zin W.A. The central role of Fas-ligand cell signaling in inflammatory lung diseases // J. Cell Mol. Med. 2004. V. 8. № 3. P. 285–293. https://doi.org/10.1111/j.1582-4934.2004.tb00318.x
  21. Caramori G., Adcock I.M., Di Stefano A. et al. Cytokine inhibition in the treatment of COPD // Int. J. Chron. Obstruct. Pulmon. Dis. 2014. V. 9. P. 397–412. https://doi.org/10.2147/COPD.S42544
  22. Tam A., Leclair P., Li L. et al. FAM13A as potential therapeutic target in modulating TGF-β-induced airway tissue remodeling in COPD // Am. J. Physiol. Lung Cell Mol. Physiol. 2021. V. 321. № 2. P. L377–L391. https://doi.org/10.1152/ajplung.00477.2020

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (113KB)

Copyright (c) 2023 Г.Ф. Корытина, Ю.Г. Азнабаева, О.В. Кочетова, Т.Р. Насибуллин, Л.З. Ахмадишина, Н.Н. Хуснутдинова, Н.Ш. Загидуллин, Т.В. Викторова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies