Symbiogenetics and Symbiogenesis: Molecular and Ecological Bases of Integrative Evolution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Symbiogenetics is presented as a discipline aimed to study the combined genetic systems resulted from co-evolution of unrelated organisms. Their research complements the methodology of genetic analysis with the approaches of “genetic synthesis” aimed at characterizing the molecular and ecological factors of integration of heterologous genomes. Hologenomes and symbiogenomes that arise via integrative evolution (symbiogenesis) are dissected, like prokaryotic pangenomes, into the core and accessory parts. In hologenome, the core part, which is constant in composition, is represented by the host genome (nuclear-cytoplasmic system of heredity), and the variable accessory part composed by metagenome of the microbial community which is associated with the host and performs functions useful for it. Mechanisms of symbiogenesis go beyond the factors of evolution of free-living organisms and include: (a) interspecies altruism associated with the refusal of symbionts from autonomous existence, and upon a deep reduction, from the ability to maintain the genome; (b) inheritance by host of symbionts as of “acquired” genetic determinants (pangenesis). Under the impacts of these factors, symbionts can be transformed into cellular organelles that have lost their genetic individuality and sometimes lack genomes. Symbiogenesis is presented as a multi-stage process, including the emergence of: (i) genome-containing prokaryotic cell; (ii) multi-genomic eukaryotic cell; (iii) multicellular eukaryotes as holobionts composed of host organisms and associated microbial communities. Genome-free organelles that have retained the basic reproductive and metabolic functions can be used as models for reconstructing the early stages of cell evolution, including the emergence of cellular genome.

About the authors

N. A. Provorov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: provorovnik@yandex.ru
Russia, 196608, St.-Petersburg

I. A. Tikhonovich

All-Russia Research Institute for Agricultural Microbiology; St.-Petersburg State University

Email: provorovnik@yandex.ru
Russia, 196608, St.-Petersburg; Russia, 199034, St.-Petersburg

References

  1. Тихонович И.А., Проворов Н.А. Симбиогенетика микробно-растительных взаимодействий // Экол. генетика. 2003. Т. 1. № 0. С. 36–46.
  2. Тихонович И.А., Проворов Н.А. Развитие подходов симбиогенетики для изучения изменчивости и наследственности надвидовых систем // Генетика. 2012. Т. 48. № 4. С. 437–450.https://doi.org/10.1134/S1022795412040126
  3. de Bary A. Die Erscheinung der Symbiose. Strassburg: Verlag Von K.J. Trübner, 1879. 30 s.
  4. Мережковский К.С. Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов. Казань: Типо-литография Имп. ун-та, 1909. 102 с.
  5. Маргулис Л. Роль симбиоза в эволюции клетки. М.: Мир, 1983. 352 с.
  6. Tikhonovich I.A., Provorov N.A. From plant-microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration // Ann. Appl. Biol. 2009. V. 154. № 3. P. 341–350. https://doi.org/10.1111/j.1744-7348.2008.00306.x
  7. Лобашев М.Е. Генетика. Л.: Изд-во ЛГУ, 1967. 751 с.
  8. Benzer S. The elementary units of heredity // The Chemical Basis of Heredity / Eds McElroy W.D., Glass B. Baltimore, Maryland: Johns Hopkins Press, 1957. P. 70–93.
  9. Инге-Вечтомов С.Г. Введение в молекулярную генетику. М.: Высш. шк., 1983. 343 с.
  10. Loegering W.Q. Current concepts of inter-organismal genetics // Annu. Rev. Phytopathol. 1978. V. 16. P. 309–320.
  11. von Bertalanffy L. General System Theory: Foundations, Development, Applications. N.Y.: George Braziller, 1968. 250 p.
  12. Тихонович И.А., Андронов Е.Е., Борисов А.Ю. и др. Принцип дополнительности геномов в расширении адаптационного потенциала растений // Генетика. 2015. Т. 51. № 9. С. 973–990.https://doi.org/10.1134/S1022795415090124
  13. Rosenberg E., Zilber-Rosenberg I. The hologenome concept of evolution after 10 years // Microbiome. 2018. V. 6. № 78.https://doi.org/10.1186/s40168-018-0457-9
  14. Проворов Н.А., Тихонович И.А., Воробьев Н.И. Симбиоз и симбиогенез. С.-Петербург: Информ-Навигатор, 2018. 464 с.
  15. Андронов Е.Е., Иголкина А.А., Кимеклис А.К. и др. Характеристика естественного отбора в популяциях клубеньковых бактерий (Rhizobium leguminosarum), взаимодействующих с различными видами растений-хозяев // Генетика. 2015. Т. 51. № 10. С. 1108–1116. https://doi.org/10.1134/S1022795415100026
  16. Igolkina A.A., Bazykin G.A., Chizhevskaya E.P. et al. Matching population diversity of rhizobial nodA and legume NFR5 genes in plant-microbe symbiosis // Ecol. Evol. 2019. V. 9. № 18. P. 10377–10386. https://doi.org/10.1002/ece3.5556
  17. Shatskaya N.V., Bogdanova V.S., Kosterin O.E. et al. Plastid and mitochondrial genomes of Vavilovia formosa (Stev.) Fed. and phylogeny of related legume genera // Vavilov J. Genet. Breed. 2019. V. 23. № 8. P. 972–980. https://doi.org/10.18699/VJ19.574
  18. Koga R., Tsuchida T., Fukatsu T. Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid // Proc. R. Soc. Lond. B. 2003. V. 270. P. 2543–2550. https://doi.org/10.1098/rspb.2003.2537
  19. Oda Y., Larimer F.W., Chain P.S. et al. Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments // Proc. Natl Acad. Sci. USA. 2008. V. 105. № 47. P. 18543–18548. https://doi.org/10.1073/pnas.0809160105
  20. Rey F., Harwood C.S. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris // Mol. Microbiol. 2010. V. 75. № 6. P. 1007–1020. https://doi.org/10.1111/j.1365-2958.2009.07037.x
  21. Проворов Н.А., Онищук О.П., Юргель С.Н. и др. Конструирование высокоэффективных симбиотических штаммов бактерий: эволюционные модели и генетические подходы // Генетика. 2014. Т. 50. № 11. С. 1273–1285. https://doi.org/10.7868/S0016675814110113
  22. Haag A.F., Arnold M.F., Myka K.K. et al. Molecular insights into bacteroid development during Rhizobium-legume symbiosis // FEMS Microbiol. Rev. 2013. V. 37. № 3. P. 364–383. https://doi.org/10.1111/1574-6976.12003
  23. Kumar K., Mella-Herrera R.A., Golden J.W. Cyanobacterial heterocysts // Cold Spring Harbor Perspectives in Biology. 2010. V. 2. № 4. a000315.https://doi.org/10.1101/cshperspect.a000315
  24. Katz L.A. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist // Philos. Transact. Roy. Soc. Lond. Ser. B. Biol. Sci. 2015. V. 370. № 1678. 20140324.https://doi.org/10.1098/rstb.2014.0324
  25. Дарвин Ч. Происхождение видов путем естественного отбора. СПб.: Наука, 1991. 539 с.
  26. Maynard Smith J. Generating novelty by symbiosis // Nature. 1989. V. 341. № 6240. P. 284–285.
  27. Козо-Полянский Б.М. Новый принцип биологии. Очерк теории симбиогенеза. М.: Пучина, 1924. 156 с.
  28. Dobzhansky Th. Genetics of the Evolutionary Process. N.Y.: Columbia Univ. Press, 1970. 259 p.
  29. Jones J.D.G., Dangl J.L. The plant immune system // Nature. 2006. V. 444. № 7117. P. 323–329. https://doi.org/10.1038/nature05286
  30. Онищук О.П., Воробьев Н.И., Проворов Н.А. Нодуляционная конкурентоспособность клубеньковых бактерий: генетический контроль и адаптивное значение // Прикл. биохимия и микробиология. 2017. Т. 53. № 2. С. 127–135. https://doi.org/10.7868/S0555109917020131
  31. Sprent J.I. Nodulation in Legumes. Kew Royal Botanical Gardens: Cromwell Press Ltd, 2001. 102 p.
  32. Denison R.F., Kiers E.T. Lifestyle alternatives for rhizobia: mutualism, parasitism and foregoing symbiosis // FEMS Microbiol. Lett. 2004. V. 237. № 1. P. 187–193. https://doi.org/10.1016/j.femsle.2004.07.013
  33. Provorov N.A. Genetic individuality and inter-species altruism: Modelling of symbiogenesis using different types of symbiotic bacteria // Biol. Communicat. 2021. V. 66. № 1. P. 65–71. https://doi.org/10.21638/spbu03.2021.108
  34. Darlington P.J. Altruism: its characteristics and evolution // Proc. Natl Acad. Sci. USA. 1978. V. 75. № 2. P. 385–389.
  35. Janzen D.H. When is it coevolution? // Evolution. 1980. V. 34. № 3. P. 409–616.https://doi.org/10.1111/j.1558-5646.1980.tb04849.x
  36. Provorov N.A. Coevolution of rhizobia with legumes: facts and hypotheses // Symbiosis. 1998. V. 24. № 3. P. 337–367.
  37. Kleinschmidt B., Kölsch G. Adopting bacteria in order to adapt to water – how reed beetles colonized the wetlands (Coleoptera, Chrysomelidae, Donaciinae) // Insects. 2011. V. 2. № 2. P. 540–554. https://doi.org/10.3390/insects2040540
  38. Проворов Н.А., Тихонович И.А., Воробьев Н.И. Симбиогенез как модель для реконструкции ранних этапов эволюции генома // Генетика. 2016. Т. 52. № 2. С. 137–145. https://doi.org/10.7868/S0016675816020107
  39. Oberholzer T., Wick R., Luisi P.L., Biebricher C.K. Enzymatic RNA replication in self-reproducing vesicles: An approach to a minimal cell // Biochem. Biophys. Res. Comm. 1995. V. 207. № 2. P. 250–257.
  40. Kurihara K., Okura Y., Matsuo M. et al. A recursive vesicle-based model protocell with a primitive model cell cycle // Nat. Commun. 2015. V. 6. № 8352. https://doi.org/10.1038/ncomms9352
  41. Brueckner J., Martin W.F. Bacterial genes outnumber archaeal genes in eukaryotic genomes // Genome Biol. Evol. 2020. V. 12. № 4. P. 282–292. https://doi.org/10.1093/gbe/evaa047
  42. Douglas A.E. The molecular basis of bacterial–insect symbiosis // J. Mol. Biol. 2014. V. 426. № 7. P. 3830–3837. https://doi.org/10.1016/j.jmb.2014.04.005
  43. Ku C., Nelson-Sathi S., Roettger M. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 33. P. 10139–10146.https://doi.org/10.1073/pnas
  44. Famintzin A.S., Baranetzky O.V. Zur Entwickelungsgeschichte der Gonidien und Zoosporenbildung der Flechten // Mémoires de l’Académie imp. des sciences de St.-Pétersbourg, 7 serié. 1867. V. 11. № 9.
  45. Фаминцын А.С. О роли симбиоза в эволюции организмов // Зап. Имп. акад. наук, физ.-мат. отд. Серия 8. 1907. Т. 20. № 3. С. 1–14.
  46. Проворов Н.А. К.С. Мережковский и происхождение эукариотической клетки: 111 лет теории симбиогенеза // Сельскохоз. биология. 2016. Т. 51. № 5. С. 746–758. https://doi.org/10.15389/agrobiology.2016.5.746rus
  47. Sagan D. From Empedocles to Symbiogenetics: Lynn Margulis’s revolutionary influence on evolutionary biology // BioSystems. 2021. V. 204:104386.https://doi.org/10.1016/j.biosystems.2021.104386
  48. Инге-Вечтомов С.Г. Ретроспектива генетики. СПб.: Изд-во Н-Л, 2015. 336 с.
  49. Проворов Н.А. Симбиогенез как эволюция генетических систем открытого типа // Генетика. 2018. Т. 54. № 8. С. 879–889. https://doi.org/10.1134/S0016675818080106
  50. Пронозин А.Ю., Брагина М.К., Салина Е.А. Пангеномы сельскохозяйственных растений // Вавил. журн. генетики и селекции. 2021. Т. 25. № 1. С. 57–63. https://doi.org/10.18699/VJ21.007

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (141KB)
3.

Download (389KB)
4.

Download (533KB)

Copyright (c) 2023 Н.А. Проворов, И.А. Тихонович

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies