Asymptotics of the Solution of the Cauchy Problem for the Evolutionary Airy Equation at Large Times


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The asymptotic behavior at large times of the solution of the Cauchy problem for the Airy equation—a third-order evolutionary equation—is established. We assume that the initial function is locally Lebesgue integrable and has a power-law asymptotics at infinity. For the solution in the form of a convolution integral with the Airy function, we use the auxiliary parameter method and the regularization of singularities to obtain an asymptotic Erdélyi series in inverse powers of the cubic root of the time variable with coefficients depending on the self-similar variable and the logarithm of time.

Авторлар туралы

S. Zakharov

N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: svz@imm.uran.ru
Ресей, Yekaterinburg, 620108

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019