Cardinality of Λ Determines the Geometry of \({B_{{\ell _\infty }\left( \Lambda \right)}}\) and \({B_{{\ell _\infty }\left( \Lambda \right)*}}\)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the geometry of the unit ball of ℓ(Λ) and of the dual space, proving, among other things, that Λ is countable if and only if 1 is an exposed point of \({B_{{\ell _\infty }\left( \Lambda \right)}}\). On the other hand, we prove that Λ is finite if and only if the δλ are the only functionals taking the value 1 at a canonical element and vanishing at all other canonical elements. We also show that the restrictions of evaluation functionals to a 2-dimensional subspace are not necessarily extreme points of the dual of that subspace. Finally, we prove that if Λ is uncountable, then the face of \({B_{{\ell _\infty }\left( \Lambda \right)*}}\) consisting of norm 1 functionals attaining their norm at the constant function 1 has empty interior relative to \({S_{{\ell _\infty }\left( \Lambda \right)*}}\).

About the authors

F. J. García-Pacheco

Department of Mathematical Sciences, University of Cadiz

Author for correspondence.
Email: garcia.pacheco@uca.es
Spain, Puerto Real

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.