Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we prove that for an arbitrary pair {T1, T0} of contractions on Hilbert space with trace class difference, there exists a function ξ in L1(T) (called a spectral shift function for the pair {T1, T0}) such that the trace formula trace(f(T1) − f(T0)) = ∫Tf′(ζ)ξ(ζ) holds for an arbitrary operator Lipschitz function f analytic in the unit disk.

作者简介

M. Malamud

Institute of Applied Mathematics and Mechanics NAS of Ukraine; People’s Friendship University of Russia (RUDN University)

编辑信件的主要联系方式.
Email: malamud3m@gmail.com
乌克兰, Donetsk; Moscow

H. Neidhardt

Institut für Angewandte Analysis und Stochastik

Email: malamud3m@gmail.com
德国, Berlin

V. Peller

Department of Mathematics, Michigan State University; People’s Friendship University of Russia (RUDN University)

Email: malamud3m@gmail.com
美国, Michigan; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017