Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves
- Авторлар: Buchstaber V.M.1, Mikhailov A.V.2
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Applied Mathematics Department, University of Leeds
- Шығарылым: Том 51, № 1 (2017)
- Беттер: 2-21
- Бөлім: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234263
- DOI: https://doi.org/10.1007/s10688-017-0164-5
- ID: 234263
Дәйексөз келтіру
Аннотация
We construct Lie algebras of vector fields on universal bundles of symmetric squares of hyperelliptic curves of genus g = 1, 2,.. For each of these Lie algebras, the Lie subalgebra of vertical fields has commuting generators, while the generators of the Lie subalgebra of projectable fields determines the canonical representation of the Lie subalgebra with generators L2q, q = −1, 0, 1, 2,.., of the Witt algebra. As an application, we obtain integrable polynomial dynamical systems.
Авторлар туралы
V. Buchstaber
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: buchstab@mi.ras.ru
Ресей, Moscow
A. Mikhailov
Applied Mathematics Department, University of Leeds
Email: buchstab@mi.ras.ru
Ұлыбритания, Leeds
Қосымша файлдар
