Relationship between the Discrete and Resonance Spectrum for the Laplace Operator on a Noncompact Hyperbolic Riemann Surface


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider arbitrary noncompact hyperbolic Riemann surfaces of finite area. For such surfaces, we obtain identities relating the discrete spectrum of the Laplace operator to the resonance spectrum (formed by the poles of the scattering matrix). These identities depend on the choice of a test function. We indicate a class of admissible test functions and consider two examples corresponding to specific choices of the test function.

作者简介

D. Popov

Lomonosov Moscow State University; Belozersky Research Institute of Physical-Chemical Biology, Moscow State University

编辑信件的主要联系方式.
Email: Popov-Kupavna@yandex.ru
俄罗斯联邦, Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019