Differential Forms on Quasihomogeneous Noncomplete Intersections


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this article, we discuss a few simple methods for computing the Poincaré series of modules of differential forms given on quasihomogeneous noncomplete intersections of various types. Among them are curves associated with a semigroup, bouquets of such curves, affine cones over rational or elliptic curves, and normal determinantal and toric varieties, including some types of quotient singularities, as well as cones over the Veronese embedding of projective spaces or over the Segre embedding of products of projective spaces, rigid singularities, fans, etc. In many cases, correct formulas can be derived without resorting to analysis of complicated resolvents or using computer systems of algebraic calculations. The obtained results allow us to compute the basic invariants of singularities in an explicit form by means of elementary operations on rational functions.

Sobre autores

A. Aleksandrov

Institute of Control Sciences, Russian Academy of Science

Autor responsável pela correspondência
Email: ag_aleksandrov@mail.ru
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016