On homogenization for non-self-adjoint locally periodic elliptic operators
- Autores: Senik N.N.1
-
Afiliações:
- St. Petersburg State University
- Edição: Volume 51, Nº 2 (2017)
- Páginas: 152-156
- Seção: Brief Communications
- URL: https://journals.rcsi.science/0016-2663/article/view/234315
- DOI: https://doi.org/10.1007/s10688-017-0178-z
- ID: 234315
Citar
Resumo
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on Rd of the form Aε = −divA(x, x/ε)∇. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (Aε − μ)−1, including one with a corrector, and for (−Δ)s/2(Aε − μ)−1 in the operator norm on L2(Rd)n. For s ≠ 0, we also give estimates of the rates of approximation.
Sobre autores
N. Senik
St. Petersburg State University
Autor responsável pela correspondência
Email: nnsenik@gmail.com
Rússia, St. Petersburg
Arquivos suplementares
