Hyperquasipolynomials and their applications
- Авторлар: Bykovskii V.A.1
-
Мекемелер:
- Far Eastern Branch of the Russian Academy of Sciences, Institute of Applied Mathematics Khabarovsk Division
- Шығарылым: Том 50, № 3 (2016)
- Беттер: 193-203
- Бөлім: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234202
- DOI: https://doi.org/10.1007/s10688-016-0147-y
- ID: 234202
Дәйексөз келтіру
Аннотация
For a given nonzero entire function g: C → C, we study the linear space F(g) of all entire functions f such that
\(f\left( {z + w} \right)g\left( {z - w} \right) = {\varphi _1}\left( z \right){\psi _1}\left( w \right) + \cdots \varphi {n_{}}\left( z \right){\psi _n}\left( w \right),\)![]()
where φ1, ψ1,..., φn, ψn: C → C. In the case of g ≡ 1, the expansion characterizes quasipolynomials, that is, linear combinations of products of polynomials by exponential functions. (This is a theorem due to Levi-Civita.) As an application, all solutions of a functional equation in the theory of trilinear functional equations are obtained.Негізгі сөздер
Авторлар туралы
V. Bykovskii
Far Eastern Branch of the Russian Academy of Sciences, Institute of Applied Mathematics Khabarovsk Division
Хат алмасуға жауапты Автор.
Email: vab@iam.khv.ru
Ресей, Khabarovsk
Қосымша файлдар
