Periodic Trajectories and Coincidence Points of Tuples of Set-Valued Maps


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A fixed-point theorem is proved for a finite composition of set-valued Lipschitz maps such that the product of their Lipschitz constants is less than 1. The notion of a Lipschitz tuple of (finitely many) set-valued maps is introduced; it is proved that such a tuple has a periodic trajectory, which determines a fixed point of the given composition of set-valued Lipschitz maps. This result is applied to study the coincidence points of a pair of tuples (Lipschitz and covering).

Sobre autores

B. Gel’man

Voronezh State University; RUDN University

Autor responsável pela correspondência
Email: gelman_boris@mail.ru
Rússia, Voronezh; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018