On Spectral Asymptotics of the Neumann Problem for the Sturm–Liouville Equation with Arithmetically Self-Similar Weight of a Generalized Cantor Type
- Авторлар: Rastegaev N.V.1
-
Мекемелер:
- Chebyshev Laboratory, Saint Petersburg State University
- Шығарылым: Том 52, № 1 (2018)
- Беттер: 70-73
- Бөлім: Brief Communications
- URL: https://journals.rcsi.science/0016-2663/article/view/234421
- DOI: https://doi.org/10.1007/s10688-018-0211-x
- ID: 234421
Дәйексөз келтіру
Аннотация
Spectral asymptotics of the Sturm–Liouville problem with an arithmetically self-similar singular weight is considered. Previous results by A. A. Vladimirov and I. A. Sheipak, and also by the author, rely on the spectral periodicity property, which imposes significant restrictions on the self-similarity parameters of the weight. This work introduces a new method for estimating the eigenvalue counting function. This makes it possible to consider a much wider class of self-similar measures.
Авторлар туралы
N. Rastegaev
Chebyshev Laboratory, Saint Petersburg State University
Хат алмасуға жауапты Автор.
Email: rastmusician@gmail.com
Ресей, St. Petersburg
Қосымша файлдар
