Spectral properties of the complex airy operator on the half-line


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove a theorem on the completeness of the system of root functions of the Schrödinger operator L = −d2/dx2 + p(x) on the half-line R+ with a potential p for which L appears to be maximal sectorial. An application of this theorem to the complex Airy operator Lc = −d2/dx2 + cx, c = const, implies the completeness of the system of eigenfunctions of Lc for the case in which |arg c| < 2π/3.We use subtler methods to prove a theorem stating that the system of eigenfunctions of this special operator remains complete under the condition that |arg c| < 5π/6.

作者简介

A. Savchuk

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: artem_savchuk@mail.ru
俄罗斯联邦, Moscow

A. Shkalikov

Lomonosov Moscow State University

Email: artem_savchuk@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017